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Abstract—In Part I of this study two models were developed for predicting free and mixed convection low
Reynolds number turbulent flows. Detailed comparisons between measurements and predictions for the case
of free convection along a heated, vertical, flat plate showed that both models yield accurate results for the
mean flow and heat transfer. As a result, the simpler of the two (a k—¢ formulation based on the notion of eddy
diffusivities for momentum and heat) was extended to predict steady free and mixed convection flows of airin a
strongly heated cavity of arbitrary rectangular cross-section and orientation. This is the subject of the present
communication.

Numerical calculations show that the details of free convection flow in a heated cavity are strongly governed
by the characteristics of the local heat transfer. The characteristics depend on the cavity aspect ratio, a/b, the
inclination angle, o, and the Grashof number, Gr,. For example, stable stratification of heated fluid inside a
tilted cavity strongly dampens the turbulent fluctuations, thus reducing convective heat losses from the cavity.
Calculations performed for the free convection cases investigated experimentally by Humphrey et al. {Sandia
Report No. SAND 84-8192(1985); Phil. Trans. R. Soc. A316, 57-84,(1985)] show good qualitative agreement
with measurements of the velocity and temperature distributions. Predictions of the Nusselt number, Nu,,
display trends which are also in accord with the measurements. For mixed convection, the details of the flow
become asymptotically independent of « as the ratio of inertia to buoyant forces, characterized by Re2/Gr,, is
increased. For a/b = 1 and o = 45°, predictions reveal a minimum in Nu, when Re2/Gr, ~ 1. Many of the
complex flow patterns revealed experimentally, for both free and mixed convection, are reproduced

numerically.

1. INTRODUCTION

1.1. The problem of interest and objective of this study

CoNSIDER a two-dimensional, partial enclosure such
as the one of square cross-section shown in Fig. 1, the
interior surfaces of which are heated to a temperature
T,, above that of the environment which is at T,,. This
configuration is here referred to as a ‘heated cavity’. It
arises frequently in systems of engineering interest
including solar cavity receivers, the ventilation of
rooms and corridors, fire and smoke propagation
through buildings and the cooling of electronic
components.

In the absence of an externally imposed flow,
buoyant forces will induce fluid motion within the
cavity. The nature and intensity of this motion will
depend on the cavity cross-section, a/b, its orientation,
o, a characteristic Grashof number for the flow, Gr, =
9B ATb3/vZ, and the overheat ratio, AT/T,, = (T, —
T,)/T,. The Grashof number determines whether
the flow will be laminar or turbulent, and the oveheat
ratio determines whether a constant or variable
physical properties condition applies. If AT/T,, is
small, then the Boussinesq approximation can be
assumed [1].

In the presence of an externally imposed flow, of
speed u,, and of angle ¢ with respect to the cavity
aperture plane, inertial forces compete against the
buoyancy for control of the flow. The Reynolds
number, Re, = u,b/v,, now becomes an important
parameter, and this ‘mixed’ convection regime is
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characterized by the ratio Re?/Gr,, a relative measure
of inertial to buoyant forces in the flow.

This study concerns the numerical calculation of
fully elliptic, turbulent, steady and two-dimensional (in
the mean) flows in strongly heated cavities of
rectangular cross-section for arbitrary values of «, ¢,
a/b, Re?/Gr, and AT/T,,. The fluid medium is air for
which the Prandtl number is Pr = 0.71. Because the
basic element of a heated cavity is the flat plate, this
configuration is also of special interest.

The accurate calculation of free convection flow
along a heated, flat plate is considered to be a logical
first step towards the accurate numerical simulation of
heated cavity flows. Part I of this work was devoted to
this problem. Two models of turbulence were developed
for predicting the characteristics of free convection flow
along a heated, vertical, flat plate. Both models are
variable-property, low Reynolds number formulations
which dispense with a priori prescriptions of near-wall
relations for velocity and temperature. Instead
numerical calculations are performed on refined grids,
well into the viscous sublayer region of the flow. One
formulation, the KEM, is based on the notion of
spatially dependent, isotropic eddy diffusivities for the
turbulent transport of momentum and heat. The
second, the ASM, obtains the turbulent fluxes directly
from a system of algebraic equations derived by
neglecting the convective and diffusive transport of
these fluxes in their respective conservation equations.
There are no limitations in the models which preclude
their application to mixed convection flows.
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cavity width

o area of cavity aperture plane

cavity height

length of the cavity normal to x—y plane

specific heat at constant pressure

constant in equation (3)

turbulence quantity related to ¢ through v,

(Oui/0x ;)(Oui/Ox;) = efv

g  gravitational constant

g; component i of the gravitation vector

G buoyancy production of turbulent kinetic
energy, p'uig;

Gr, cavity Grashof number (with AT = T,—T),
9B ATH v,

h  cavity heat transfer coefficient (based on
aperture area) .

k  turbulent kinetic energy, uju;/2

[ length scale of energy-containing eddies,
equation (6)

n  coordinate direction perpendicular to a

surface

cavity Nusselt number, equation (9),
hb/7,
alternative definition of the cavity Nusselt

number, equation (10)

p  pressure

Pr  Prandtl number, uC,/y

Pr, turbulent Prandtl number

0,, heat transfer through cavity-aperture plane

total heat transfer from cavity walls

d,, wall heat flux

R gas constant for air

Re, cavity Reynolds number, ub/v,,

St cavity Stanton number, h/(p,,Cou.,)

T temperature

SO0 TN e
R -

T, arithmetic average of the three cavity wall
temperatures
T, ambient temperature (293 K)

u  velocity component in x-direction
u; velocity component in i-direction

NOMENCLATURE

u, characteristic shear stress velocity, /z,/p
u,, velocity of wind approaching a cavity

v velocity component in y-direction

x  coordinate direction, defined in Fig. 1

y  coordinate direction, defined in Fig. 1

y* dimensionless coordinate, y/y,

y. wall-region length scale, v/u,

Greek symbols
o cavity inclination angle, defined in Fig. 1
f  coefficient of volume expansion, 1/T,
y  thermal conductivity
6 boundary-layer thickness
AT characteristic temperature difference,
T.— T, ;taken as T,— T, in a cavity
¢ isotropic dissipation of turbulent kinetic

energy, vD

nr inner region length scale, equation (5),
[(vo/ PP /(gBAT)]?

0 nondimensional temperature,
(T-TIT.—T,)

4 molecular viscosity

4, turbulent viscosity

v molecular kinematic viscosity

p  density

o, turbulent Prandtl number for scalar ¢

wall shear stress

¢ arbitrary scalar quantity; also orientation
of wind approaching a cavity.

Superscripts
* fluctuating quantities
mean quantities.

Subscripts
i,j spatial indices
t  turbulent quantity
w  wall condition
oo ambient condition.

Detailed comparisons between measurements and
predictions presented in Part I of this study show
clearly that the algebraic stress model (ASM)is capable
of resolving correctly the anisotropic characteristics of
turbulent free convection along heated, flat plates.
However, this model is only marginally superior to the
k—e model (KEM) when consideration is restricted to a
prediction of the mean flow and heat transfer. As a
result, it was decided to extend and apply the simpler
KEM formulation to simulate free and mixed
convection flows in strongly heated cavities of arbitrary
rectangular cross-section and orientation. This is the
subject of the present communication.

1.2. Free and mixed convection in the cavity
configuration

Thefollowingis a summary of those studies reviewed
by Humphrey et al. {2, 3] most meaningful to the
present work.

Motivated by an interest in fire and smoke spread
problems, Ku et al. [4], Markatos et al. [ 5],and Kumar
and Cox [6] have applied high Reynolds number forms
of the k—¢ turbulence model to predict two-dimensional,
buoyancy-driven flows in cavity-related configura-
tions. Ad hoc extensions to the low Reynolds number
k—e model of Jones and Launder [7] have been
formulated by Fraikin et al. [8] and Sagara [9], but
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T=Ue, V=0, T=Te

k specified
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Fi6. 1. Boundary conditions for a heated cavity in free or mixed convection regimes. For mixed convection, the
upper and lower edges of the cavity are completely adiabatic.

they have been applied only to fully enclosed,
rectangular configurations. All of the above studies
invoke the Boussinesq approximation thus limiting the
results to low overheat ratios. It appears that numerical
models have not been extensively developed for
predicting free and mixed convection turbulent flows in
cavities of arbitrary orientation.

The corresponding state of experimentation is
equally incomplete. Hess and Henze [10] have
performed experiments using flow visualization and
the laser—Doppler velocimeter (LDV) technique in a
three-dimensional cavity at relatively low values of
AT/T,,. Only the back wall of their cavity was heated.
The use of water as the fluid medium allowed them
to attain Rayleigh numbers ranging from 2 x 10'°
to 2x 10!, They observed that the flow became tur-
bulent at a Rayleigh number of about 7 x 10*°. How-
ever, the data in ref. [2] suggests that this transition
value can be considerably lower when heating (with its
attendant destabilization effects) is applied to upward
facing horizontal or inclined walls.

In consecutive investigations, Penot [11] and
Mirenayat [ 12] have studied the free convection of air
in a cubical cavity with all five walls equally heated to
overheat ratios ranging from 0.04 to 0.47. Flow
visualization and limited velocity measurements using
the LDV technique were performed. However, very
extensive heat transfer measurements were made as a
function of Grashof number and cavity orientation
from which Mirenayat [12] derived the following
Nusselt number correlation based on the aperture
plane area:

Nuy=a,Gri2 (107 < Gr, <4x10% (1)

where Gr, is the cavity Grashof number as defined in
the Nomenclature. In equation (1), @, and a, are
parameters which depend on the cavity inclination
angle, o; b is the cube side. Typically, 0.15 < a, < 0.60
and 0.30 < a, < 0.37, strongly supporting a 1/3 power
dependence on Gr,. Kraabel [13] has also investigated
the free convection of air in a cubical cavity with all five
walls heated. The large characteristic dimension of the
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cavity (2.2 m) permitted obtaining values of Gr, as large
as 1.2 x 102 for overheat ratios ranging between 0.39
and 2.55 approximately. Measurements in the aperture
plane were used to determine the air temperature,
velocity, enthalpy flux and radiation heat flux
distributions. Convective heat losses from the cavity
were derived from these data. The aperture plane
Nusselt number correlation obtained by Kraabel [13]
is:

Nuy = 0.44 Gri3(T,/T.)*1® (107 < Gr, < 1.2 x 10'2),
)

This correlation is valid only for the inclination angle
o = 0°, but it is in very good agreement with Mirenayat’s
[12] lower overheat ratio results for which a; = 0.465
and a, = 0.33 when x =0°. One of the main con-
clusions to be drawn from the measurements in refs.
[12] and [13] is the length scale independence of
the cavity convective heat transfer coefficient.
Measurements and calculations of the heat transfer
coefficient for turbulent free convection along a vertical
flat plate, discussed in Part I of this work, also show this
length scale independence.

Humphrey et al. [2, 3] have performed a detailed
experimental study of the turbulent flow and heat
transfer in a two-dimensional, rectangular cavity with
AT/T, = 1.26and Gr, = 4.4 x 107 for various values of
the cavity aspect ratio and orientation. LDV
measurements of the velocity and turbulent stress
components were obtained for the free convection
regime. Measurements of temperature and extensive
flow visualization were performed for both the free and
mixed convection regimes. The numerical simulation of
their experimental observations has been the primary
objective of the present work.

2. TURBULENCE MODEL AND
NUMERICAL PROCEDURE

The turbulence model used for the present
calculations is the variable physical property KEM
closure described in detail in Part I of this study. In this
closure the turbulent flux of any fluctuating scalar
quantity ¢ (u;, T, k, etc.}is related to the spatial gradient
of the corresponding mean quantity, ®, via a spatially
dependent eddy diffusion coefficient. In this generaliz-
ation of the Boussinesq assumption the eddy diffusion
coefficient for ¢ given by

)
b2t ©
Oy 048
where it is tacitly assumed that k'/2 and k*%/¢ are
proportional to the turbulent velocity and length
scales, respectively. In equation (3), o, is the turbulent
Prandtl number for the quantity ¢ and, like C,, itis a
model constant. (All the KEM model constants are
given in Part I of this work.)

Because the fluid medium is air, a perfect gas

equation of state is used to relate variationsin density to
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variations in temperature. A simple relation for the

mean square of the temperature fluctuations, F, is
derived from its transport equation under the
assumption of an equilibrium flow.

Empirical wallrelations for velocity and temperature
are deliberately avoided in the formulation. Instead, the
low Reynolds number approximation initially pro-
posed by Jones and Launder [7] is extended and
improved. As explained in detail in Part I of this work,
in this approach numerical calculations are performed
all the way into the viscous sublayer region of the flow.
Damping of the turbulent fluctuations near walls is
simulated by requiring that the turbulent viscosity vary
according to a Van Driest-type relation.

Finite-difference forms of the elliptic transport
equations for momentum, energy, turbulent kinetic
energy and its rate of dissipation are solved on a 2-D
nonuniform grid using an under-relaxed iteration
technique that is implicit in time. The solution
procedure is the REBUFFS code developed by
LeQuere et al. [14], extended to include the KEM
formulation as described in Part I of this work. No
special difficulties were experienced in obtaining
steady-state, grid-independent results for the con-
ditions investigated.

2.1. Boundary conditions

The solution of the system of elliptic equations
describing the flow in a heated cavity requires a
specification of appropriate boundary conditions for
the unknown variables along the boundaries of the
calculation domain. Figure 1shows the conditions used
for the free and mixed convection calculations,
respectively.

(i) Solid walls. The specification of wall conditions for
velocity and temperature in earlier studies of natural
convection in heated cavities (and enclosures) have
been inconsistent and sometimes vague ; contrast, for
example [5, 8, 9]. Sagara [9] does not explain clearly
how the wall region is treated. Law-of-the-wall
relations were tacitly assumed by Markatos et al. [5]. In
spite of the fact that Fraikin et al. [8] pursue a low
Reynolds number approach, looking at the way the
boundary value for dissipation was imposed, it appears
that the first calculation node was placed in the inertial
flow region. In all three studies it is unclear how the wall
condition for temperature was dealt with. As pointed
out in Part I of this work, even in pure free convection
there are no universally applicable power-law relations
for velocity and temperature, since the general
dependence on temperature and surface orientation of
the coefficients in such relations is simply unknown.

Wall boundary conditions in the present cavity
calculations were prescribed in the same way as for the
flat plate, described in Part I of this work. The
procedure requires specifying the value of the turbulent
kinetic energy at the wall. The dissipation condition,
together with no slip, impermeable wall conditions for
velocity and the wall temperature (known from the
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experiments) are summarized below :

B
l

=0
T,
Y @

akllz 2
o=2(%).

where T, denotes a constant value or a prescribed
variation of wall temperature, and n denotes the
coordinate direction normal to the wall in question.
For the free convection calculations, the following
values for T,, measured by Humphrey et al. [2, 3] were
imposed along the inside walls of the heated cavity:
lmp =611 K, Tyua = =673 K, Thouom =673 K. In the
experiments these values did not change significantly
with a/b or a. Similarly, the temperature distributions
measured along the upper and lower heated edges of the
cavity were imposed. For the parametric mixed
convection calculations, all walls inside the cavity were
fixed to T,, = 643 K, the entire upper and lower edges
being assumed adiabatic.

An estimate of the thickness of the viscous sublayer
region is needed to maintain the necessary grid
refinement in the numerical claculations. For free
convection thisis derived from the flat plate correlation
obtained by George and Capp [15] who find

x =Y
I

17y =yt )

Hr r
In Part I of this work it is shown that y* is
approximately 4. During the course of calculation the
grid refinement is continuously checked against this
criterion.
(iiy The far field ( free boundaries).

(@) Free convection. An accurate way of specifying far
field boundary values for velocity, based on the analysis
of the flow induced by a heated point source, has been
described by LeQuere et al. [14] in relation to
predicting laminar free convection flow in a heated
cavity. It was shown in ref. [14] that, while a realistic
calculation of the far field flow pattern does require
careful attention to the specification of the far field
boundary conditions, the characteristics of the flow
inside and immediately in front of a cavity do not differ
significantly from those calculated by simply specifying
zero normal gradients of velocity everywhere along the
far field boundaries. Since the free convection cases
investigated in refs. [ 2, 3] are the ones of concern to this
study, boundary conditions were implemented which
are in closest accord with those experimental
observations. Thus, for pure free convection, zero
normal gradients for i, ¥ and T were specified on all
three free boundaries. A small value of turbulent kinetic
energy was specified by setting k = 0.007m?s ™~ on the
upstream free boundary (boundary ‘1" in Fig. 1). The
value of D on this boundary was estimated by means of
equation (4). On the other two free boundaries the
normal gradients of k and D were set to zero. The
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condition for sufficiently small gradients of the
variables on the free boundaries was guaranteed by
determining appropriate positions for the latter
through a trial and error procedure. Further discussion
A sencr tlan nnnrren e o msveenn o smenridad s

COncer uuxg LT alAlll a\,y' Ul Lhib dl}yl valii id pruviatu xu
Section 3.2, subsection (ii).

(b) Mixed convection. In contrast to the free convection
case, far field mixed convection boundary conditions
were not determined in the experiment of refs. [ 2, 3] and
it was necessary to approximate these. A uniform flow
at ambient temperature was specified on the upsteam
free boundary (boundary ‘3’ in Fig. 1). As for free
convection, a small value of k was specified on this
boundary by setting k = 0.007 m? s~ 2. The value of D

was not calculated from equation (4). Instead, it was

4 0L LRICIAINE UL DRl 22133544, 1L

estimated from the inviscid approximation [16]
k3;2
e=vDr A - 6)
in which the values of 4 and ! were set to 1 and 0.015,
respectively. Zero normal gradients were prescribed for
all variables on the other two free boundaries.

2.2. Testing and grid refinement

Besides the heated cavity results presented and
discussed in the next section, additional tests were
performed to: (a) validate various purely numerical
aspects of the calculation procedure ; and (b) check the
performance of the KEM model for two limiting flow
conditions{free convection along a heated flat plate and
forced convection in a heated cavity). Purely numerical
aspects were checked by reproducing some of the
heated cavity laminar flow cases reported in LeQuere et
al. [14], and the limited free convection velocity
measurements of Sernas and Kyriakides {17]; and by
calculating the time-dependent characteristics of 2-D
and 3-D wall-driven laminar flows in an enclosure with
and without an initially imposed, stable stratification.
Results for the latter tests, reported in Koseff et al. [ 18],
show that the 2-D calculations are in very good
agreement with the measurements and predictions of
others, but that the 3-D calculations are prone to
numerical diffusion. Calculations pertaining to
turbulent free convection along a heated, flat plate have
already been presented and discussed extensively in
PartIofthis work. Predictions of forced convectionina
heated cavity, corresponding to the experiment of Fox
[197 and the mixing length calculation by Chin et al.
[20], are provided in Humphrey et al. [21], where good
agreement is reported with respect to the data available
for velocity and temperature.

The outcome of this extensive testing is the
conclusion that, subject to the grid distribution
considerations discussed below, the results of the next
section are essentially free of any serious numerical
inaccuracy so that significant discrepancies arising
between measurements and calculations must be
explained in terms of experimental and/or turbulence
model uncertainties.
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Numerical explorations showed that an unevenly
spaced grid composed of 69 x 53 nodes (in the x- and y-
directions, respectively) was sufficient to yield grid-
independent cavity flow calculations. Of these nodes,
31 x 31 were contained in the cavity with not less than
five nodes always located within the respective wall
viscous sublayers. A factor of 1.3 was used for
expanding the grid from each wall in the cavity. With
this scheme about six nodes ended up between the wall
and the position of maximum velocity along each wall.
All calculations were performed on the CDC 7600
machine at the Lawrence Berkeley Laboratory.
Typically, 490K octal words of computer storage and
750iterations (1.1 s per iteration) were needed to obtain
converged results. The criterion for convergence is
explained in Part 1 of this work. For the cavity
calculations the additional condition was imposed that
the total heat flow from the cavity walls should equal
that through the aperture plane to within 1%.

3. RESULTS AND DISCUSSION

3.1. Preliminary considerations

The KEM formulation presented in Part I of this
work is extended here to retain direct buoyancy
contributions to the balances of turbulent kinetic
energy and dissipation [the terms represented by G
and C,;GD/k in equations (13) and (14) in Part I].

The quantity p'u; in the buoyancy production of k,
G = p'ulg;, was modeled by combining equations (6)
and (9) in Part I to yield the following gradient
approximation:

. 1 g oT

pug; = T Pr, ox, 9i- )]

It was pointed out in Part I that the application of
equation (7) to heated, vertical, flat plates leads to a
physically inconsistent contribution to the balance of k.
However, it was also shown that the error incurred
through doing this is small, due to the dominance of the
shearing production of k. By contrast, equation (7) does
provide a physically consistent approximation for the
buoyant production of k along heated, horizontal and
inclined, flat walls. Calculations discussed below show
that in the heated cavity configuration, regardless of
orientation, extensive portions of the flow have a large
component of the temperature gradient aligned with
the direction of gravity. As a consequence, (7) is
expected to provide a useful approximation for the
calculation of G in the k and ¢ equations.

Values for the constant C,; in the buoyancy term in
the dissipation equation have been determined for
isolated vertical (C,; = 1.44) and horizontal (C,; =
0.288) walls by Rodi [22]. The correct value for a wall of
arbitrary orientation is not known. In their studies,
involving the flows in a heated cavity and an enclosure,
respectively, Markatos et al. [S] and Sagara [9] neglect
the buoyant contribution to dissipation altogether
(C.; = 0). By contrast, Fraikin et al. [8] use C,3 =0.7
in their enclosure calculations. None of these studies
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involved inclined walls. Lacking further knowledge
concerning an appropriate value for C,; for the walls in
a cavity of arbitrary orientation, three values (0.7, 0.9,
1.1) were tested. The value 0.9 is roughly the average of
the values for isolated vertical and isolated horizontal
walls. The values 0.7 and 1.1 were used to explore the
effects on the flow of inducing a relative decrease and
increase respectively in the buoyant contribution to
dissipation. Turbulence quantities (such as k and ¢) and
the heat transfer were found to decrease with increasing
values of C.,5, but the effects on mean velocity and
temperature were relatively minor. The cavity Nusselt
number computed using C,; = 0.7 was 8.3% larger
than the value computed using C,; = 1.1. Of the values
tested, C,.; = 0.7 provided the most consistent overall
agreement with the quantities measured by Humphrey
et al. [2, 3] on the aperture plane of their cavity. This
was the value used in the present calculations.

The next two subsections present results and
discussions of KEM predictions of free and mixed
convection flows in heated cavities. The free convection
calculations correspond to the experimental conditions
investigated by Humphrey et al. [2, 3] in which
Gr, = 44x10" and AT/T, = 1.26 with: a/b=1, «
=0° a/b=1, a=45; and a/b=0.5, a =0° An
investigation of the influence of the parameters a/b, «
and AT on cavity Nusselt number is also presented.
Mixed convection flow has been computed only for the
case a/b=1, o« =45°; but varying the free-stream
velocity such that Re?/Gr, = 0.4, 0.85, 21.3 and 854,
respectively.

3.2. Free convection

The structure of the flow inside a heated cavity
depends strongly on the cavity orientation and aspect
ratio. The size and intensity of the recirculating flow
region induced at the lower corner of the aperture plane
depends primarily on the inclination angle, a, of the
cavity. However, for shallow cavities (a/b < 1) the
reattachment location of the separated flow also
depends on the cavity aspect ratio. The stable
stratification of heated fluid, and hence the damping of
turbulent fluctuations in the cavity, depend on both a
and a/b. The combination of these and related complex
flow characteristics determines the convective heat loss
from the cavity. Following a summary of some general
heat transfer results, detailed numerical predictions for
the experimental conditions investigated in refs. [2, 3]
are examined.

(i) Heat transfer. Integration of the energy equation
over the rectangular control volume bounded by the
three heated cavity walls and the aperture plane yields :

c,,j (po+p'v)T dA+CpJ o' T'5dA
Ao

e

where A, is the area of the cavity aperture and Q,, is the
total heat conduction from the three heated cavity

e i>a—TdA =0, (8
dy
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walls. The LHS of equation (8) represents the heat
transferred through the aperture plane, denoted by Q,,.
(This, as opposed to {,, was the quantity estimated
in ref. [2] from the LDV measurements of &.) The
aperture plane Nusselt number is evaluated numeri-
cally as,

=.AT ©)

Nu,
where c is the length of the cavity normal to the x—y
plane, AT = (T, — T, )),and T is the average of the three
wall temperatures, T, = (T, + Thack + Toouom)/3-

Table 1 provides a comparison between measure-
ments and predictions of Nu, for conditions
corresponding to the experimental study. Also shown
in the table are the Nusselt numbers predicted for the
individual walls for each of the cases investigated. The
predictions show that the heat transfer from the top
wallis always less than from the other two walls for both
aspect ratios and orientations. Inclining the cavity
significantly decreases the heat transfer from both the
top and the back walls, due to the reduction in speed of
the fluid along these tilted walls and to the stable
stratification of fluid trapped in the cavity. By contrast,
the heat transfer from the bottom wall, whose heated
surface is tilted facing upward, is slightly increased. The
heat transfer from the back wall in the shallow cavity is
greater than that from the back walls in the deeper
cavities. This is due to the impingement on the back wall
of the shallow cavity of part of the flow which separates
at the bottom inlet corner ; a phenomenom which is not
observed in cavities with a/b > 1 for which flow
reattachment always takes place completely on the
bottom wall. As a result it may be concluded that while
the total convective heat loss from a shallow cavity can
exceed that from a deep cavity, inclining a cavity should
always work to reduce the total convective loss.

Although the trends in the predicted aperture plane
Nusselt numbers are consistent with the measurements,
the absolute values differ significantly. A detailed error
analysis in ref. [ 2] shows that the experimental Nusselt
numbers, calculated by assuming

Q0w =04 = (5/R) C,,J

Ao

vdA4
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in equation (9), are prone to systematic uncertainties
which, unfortunately, are difficult to quantify. They
arise mainly from nonuniform seeding and weak but
significant three-dimensionality in the flow. While
these two effects introduce only a small deviation in the
individual measurements of velocity, their cumulative
effect on the calculation of 0, is potentially serious. It is
shown [2] that the resulting uncertainties can account
for a systematic underestimation of the heat transfer
through the cavity aperture plane (by as much as 50%,
when a/b = 1, a = 0°). Given the accuracy with which
the KEM formulation predicts the mean flow and heat
transfer characteristics pertaining to free convection
along a vertical, flat plate, and forced convection in a
heated cavity, oneis tempted to blame the experimental
uncertainties for the Nu, discrepancies shown in Table
1. But caution must be exercised since it will be shown
below that, although fairly good predictions are
obtained on average for the free convection velocity
and temperature distributions in heated cavities, the
discrepancies observed in the predictions of these
variables can be explained in terms of an underpredic-
tion of the eddy diffusion coefficient, y,. The resultant
underprediction of turbulent diffusion of momentum
and heat between cold and hot fluid respectively
entering and leaving the cavity will lead to an
overprediction of Nu,.

Figure 2a shows the dependence of Nu, on Gr, for
free convection in heated cavities with the same
orientation but different aspect ratios. The points,
joined by continuous lines in the figure, were calculated
by varying the aperture height of the cavity (b = 0.1,0.2
and 0.3 meters) for each aspect ratio. As anticipated
from earlier discussion, for a given Grashof number it is
seen that the convective heat loss from the shallow
cavity is the largest, followed by the square and deep
cavities, respectively. A dependence of the Nusselt
number on Gry-3! is observed for the three aspect ratios,
over the range 4.8 x 107 < Gr, < 1.3 x 10°, This result
suggests that the cavity heat transfer coefficient, h, is (at
most) only a weak function of the characteristic length
scale, b. This numerical finding for 2-D cavities is in
close agreement with the length scale independence of
the heat transfer coefficient observed experimentally in
3-D cavities ; see Section 1.2 and [12, 13, 23].

Table 1. Measured and predicted Nusselt numbers for the free convection cavity flow
experiment of ref. [2]

alb=0.50=0° afb=1,a=0° a/b=1a=45°
top wall 18.87 13.77 4.34
Nuy; back wall 23.24 21.15 1345
bottom wall 22.89 21.68 22.94
Nu prediction 65.01 56.61 40.71
b measurement 54.1+3.8 272432 16.6+3.2

W aT
Nuy; = y-—dl) [y AT =
o On i YoAT

Qi/ c

where i denotes the wall considered, n is normal to the wall and [ is tangent to the wall.
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F1G. 2a. Prediction of Nu, vs Gr, for free convection flow in a
heated cavity: &« = 0°; AT/T, = 1.19; a/b = 1.5, 1 and 0.5.

The effect on heat transfer of varying the cavity
orientation for conditions corresponding to a/b =1
and a low overheat ratio, AT/T,, = 0.17, are shown in
Fig. 2b. The points joined by dotted lines in the figure
are the calculated results. Also shown are the best fits to
the experimental measurements of ref. [12] for a heated,
cubical cavity at the same two inclination angles. In the
figure, the definition for the Nusselt number, Nu', used
in ref. [12] is adopted. It is based on the total heated
internal surface area, S, and is given by

. Qub
TSy AT

Foracube S = 5L% where Lis the cube side. Both sets of
results in Fig. 2b show that increasing the cavity
inclination angle, o, decreases the convective heat
losses. As before, both the predictions and measure-
ments support a 1/3 power dependence of Nu’ on Gr,.
The agreement between the 2-D calculations and the 3-
D measurements of Nu' is unexpected and misleading
sinceitis known [13] that the mean flow emerging from

Nu (10)

hd T T
—— Mirenayat |12}
w0 A
N’
10 —
10° S L 1
10° 10’ 10° 10° 10"°

FiG. 2b. Prediction (dotted lines) of Nu' vs Gr, for free
convection flow in a heated cavity: a/b = 1, AT/T, = 0.17,
o« = 0° and 45°. Best fits (continuous lines) to the measure-
ments of Mirenayat [12] in a cubical cavity are also shown.
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a cubical cavity is strongly three-dimensional and this
must influence the heat transfer. Individual wall
calculations for the conditions of Fig. 2b [21] confirm
this point. The calculated Nu for the top and back walls
of the heated 2-D cavity are considerably larger than
the values measured for the cube. The smaller rates of
heat transfer from these walls in the cube are attributed
to the higher characteristic temperature achieved by
the air, due to 3-D mixing. The closeness of the resultsin
Fig. 2b must be ascribed to the additional heat transfer
from the two side walls in the cubical cavity which
renders the surface-averaged losses roughly equivalent.

(ii) Flow characteristics. Due to space limitations, we
have chosen only the case with a/b = 1 and a = 0° for
detailed examination here. However, where ap-
propriate some of the results for the other two cases
investigated (a/b = 1, « = 45° and a/b = 0.5, o = 0°)
will also be mentioned. Complete results for all three
cases are available in ref. [21].

Plots of the velocity vector fields and of temperature
for all three cases are shown in Figs. 3 and 4,
respectively. Large regions of recirculating flow arise
along the bottom cavity wall when « = 0°, and in all
cases reattachment occurs on the bottom wall. For the
shallow cavity this produces a striking downward
redirection of part of the flow in the shear layer
impinging on the back wall. This pattern has been
observed in flow visualization experiments[2,3]. When
o = 0° a second (smaller) region of recirculating flow
arises downstream of the aperture plane top corner,
where the hot air is discharged from the cavity.

Inspection of the figures shows that tilting the cavity
forward significantly reduces both the magnitude and
extent of the buoyancy-induced motion within the
cavity. In spite of the net through-flow, trapped hot air
is stably stratified inside the tilted cavity and works to
slow down the mean motion and dampen the turbulent
fluctuations. Unable to penetrate the stably stratified
pool of fluid, air rising along the inclined back wall
skirts past it to emerge from the cavity. This shearing
motion, combined with a weaker buoyancy driven
motion within a thin layer of fluid adjacent to the tilted
top wall, induces a weak counter-clockwise recircu-
lation of the hot air in the pool.

Calculations of the turbulent kinetic energy and of
the temperature fluctuations (available in ref. [217])
show large values for these quantities along the bottom
and back walls of the cavity witha/b = 1 and o« = 0°.In
both of these regions the shearing production of k, and
hence the production of T'2,is large. Along the top wall,
stable stratification and wall-damping significantly
reduce the levels of k and T'2. The highest levels of
turbulent kinetic energy arise where the hot air is
discharged from the cavity. This is due to shearing
production of k as the air turns and accelerates around
the top corner. By contrast, large values of T'? are
not observed in this region [where T'Z o (8T/dy)?
because of the strong reduction in dT/dy by turbulent
diffusion. The calculations show that large portions of
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FiG. 5a. Aperture plane profiles of measured (points) and predicted (lines) x- (%) and y- () components
of velocity and turbulent kinetic energy (k) for free convection flow in a heated cavity:a/b = 1,a = 0°, Gr, =
44 x 107, AT/T,, = 1.26. Experimental data from refs. [2, 3].

the cavity are occupied by essentially turbulence-free
air at ambient temperature.

Distributions for k and T2, qualitatively similar to
those described above, were obtained in the shallow
cavity (a/b = 0.5, « = 0°). By contrast, stable stratifi-
cation in the inclined cavity (a/b = 1, o = 45°) strongly
reduced the extent and magnitude of both quantities.
For this case, the turbulent kinetic energy and the
temperature fluctuations peaked near the bottom
inside corner of the cavity. Large temperature

fluctuations were also predicted in the thin fluid layer
skirting the pool of hot air trapped in the cavity.
Quantitative comparisons with the measurements
[2,3]fora/b = 1 and a = 0° are shown in Figs. 5and 6.
(Plots for the other two cases investigated are available
in ref. [21].) Two sets of calculations are provided. One
was performed using the far field boundary condition
treatment for free convection described in Section 2.1.
The other was performed using precisely the
experimental values determined in refs. [2, 3] for

O Measured 6

—_— 8
\ _I_/‘,T } Predictions

—-— 6 Predictions using B.C.

i 71 1

from (2)

[-]

F1G. 5b. Aperture plane profiles of measured (points) and predicted (lines) nondimensional temperature (8) and

predicted (dotted line) normalized temperature fluctuations [(7"2)!/2/AT] for free convection flow in a heated
cavity: a/b = 1,a = 0°, Gr, = 44 x 107, AT/T,, = 1.26. Experimental data from refs. [2, 3].
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F1G. 6a. Comparisons between: measurements (points) and predictions (lines) of the y- (§) component of

velocity ; measurements (points) of v'? and predictions (dotted line) of 2k/3 ; for free convection flow in a heated
cavity:a/b = 1,a = 0°, Gr, = 4.4 x 107, AT/T,, = 1.26. The insert shows the (vertical) comparison location
inside the cavity. Experimental data from refs. [2, 3].

u, o and k along a set of free boundaries located
considerably nearer to the aperture plane. Itis seen that
the differences are small between the two sets of
calculations. This is an important and very useful
finding for it implies that the free convection flow and
heat transfer characteristics of a heated cavity are
strongly determined by local events, the far field having

only a minor influence. A similar finding was com-
municated by LeQuere et al. [ 14] for the case of laminar
free convection flow.

The predicted i velocity component, on the aperture
plane (Fig. 5a) and inside the cavity (Fig. 6b), is in fairly
good agreement with the measurements. Similar
agreement for this component was obtained for the

u |m/s|

3kx10, v¥x10
1m?/)

o4

| I I T T

Measurements

Predictions

a5 [}

%

Fi6. 6b. Comparison between: measurements (points) and predictions (lines) of the x- (1) component of

velocity ; measurements(points) of u’> and predictions (dotted line) of 2k/3 ; for free convection flow in a heated

cavity:a/b = 1,0 = 0°,Gr, = 4.4 x 107,AT/T,, = 1.26. The insert shows the (horizontal) comparison location
inside the cavity. Experimental data from refs. [2, 3].
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other two cases investigated. By contrast, the absolute
value of the © component (Fig. 5a) is overpredicted
along the aperture plane, although there is agreement
with regard to the position for & = 0. A similar result
was obtained for a/b = 0.5 and « = 0°. Calculations of
the o component for a/b = 0.5 and 1 with & = 0° failed
to reproduce the region of reversed flow extending
through the aperture plane along the bottom wall of the
cavity. However, good agreement was obtained inside
the cavities (see Fig. 6a for the present case) and along
the aperture plane of the cavity with a/b=1 and
o = 45°. Admitting the possibility of a large (but
improbable) positioning error in the measurement
aperture plane location when o =0°, we compared
calculated ¢ profiles at y/a=—0.02 with the
measurements and found no significant improvements.
Given the numerical accuracy of the calculations,
particularly in this region of the flow where the grid is
especially refined, and the relatively small uncertainty
in the measurement of 7, we must point to afailing in the
turbulence model to explain the discrepancies observed
for v in the aperture plane when « = 0°.

First, we draw attention to the rather low levels of
predicted turbulent kinetic energy and normal stress
components (estimated as 2k/3) respectively shown in
Figs. 5a, 6a and 6b. Similar results were obtained in the
cavity with a/b = 0.5 and « = 0°, but not in that with
o =45°, where stably stratified fluid significantly
reduced the level of the fluctuations. Although it is
shown [2, 3] that the fluctuating velocity measure-
ments are prone to systematic uncertainties which
inflate their value, even a reduction of 65%; (an upper
limit to the magnitude of all the uncertainties
combined) fails to bring the measurements into
acceptable conformity with the calculations. Second,
we note that larger values of k in equation (3) would
imply larger values predicted for the eddy diffusion
coefficient, u,, and, as a consequence, increased
turbulent diffusion. An increase in the turbulent
diffusion of momentum between the flows entering and
leaving the cavity would bring the aperture plane &
component and k calculations in closer agreement with
the measurements. From this argument we conclude
that it seems likely the eddy diffusion coefficient of the
mixing motion has been underpredicted. Further
considerations suggest why, as well as how this
shortcoming might be relieved.

In the relation for u, given by equation (3) the
quantity C, has been fixed to the constant value 0.09.
Pourahmadi and Humphrey [24] show that, infact, C,
is a complicated function of streamline curvature, the
pressure-strain and wall-damping effects. Parallel work
by Ljuboja and Rodi [25] shows that the effects of
buoyancy will also work their way into a more
generalized expression for C,, thus yielding larger
values for this quantity in unstably stratified flows. The
expression derived inref. [25], for the case of horizontal
and vertical buoyant wall jets (parabolic flows) is of the
form C, = (w'?/k)w, where u'? is determined from an
algebraic stress model relation and w is a function of a
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wall damping function, the buoyant production of 1’2
and 10 model constants which must be determined
experimentally. While a similar but more general
relation can be derived for the present elliptic flow,
it involves additional undetermined constants.
Unfortunately, currently available experimental data
bases are not sufficiently extensive or accurate enough
to allow an unambiguous optimization of all constants.
Even within the context of an algebraic stress
formulation (see Part I of this work), for which it is
unnecessary to prescribe an eddy diffusion coefficient,
#,and hence a function for C,, the problem of constant
optimization remains. As a result, we have chosen
to accept the shortcoming of the present, simpler
model, anticipating that the existence of absolute discre-
pancies between measurements and calculations will
not invalidate the relative trends revealed by the
calculations. However, we do expect the accuracy of the
present KEM formulation to increase as Reg /Gr, — 0.

Figure 5b compares measurements and predictions
of nondimensional temperature on the aperture plane.
(Calculated dimensionless temperature fluctuations
are also provided even though measurements are not
available.) Agreement is relatively good although the
measurements suggest a thicker layer of heated air
emerging from the cavity than is actually predicted.
This is consistent with the overprediction of & near the
top of the aperture plane, shown in Fig. 5a; all other
conditions being equal, the reduced residence time of a
parcel of air in the cavity should lead to a relative
reduction of its energy content. The calculations reveal
relatively large temperature fluctuations near the top
and the bottom corners of the aperture plane, and a
fairly uniform flow at ambient temperature crossing the
rest of the aperture plane.

3.3. Mixed convection

In the experiments of refs. [2, 3] some interesting
phenomena and flow structures were observed for
heated cavity flows in the mixed convection regime,
depending on the relative magnitude of buoyant and
inertial forces. The purpose of this part of the numerical
study has been to establish the relative effects of an
imposed flow on the convective losses from a heated
cavity. The flow structure in a heated cavity in the
mixed convection was examined for different free-
stream velocities such that the parameter of interest,
Rel/Gr,, varied over a meaningful range. In the
calculations « = 45°, a/b=1 and u,, = 0.7, 1, 5 and
10 m s~ !, corresponding to ReZ/Gr, = 0.4, 0.85, 21.3
and 854, respectively. The boundary conditions for
these calculations have been discussed in Section 2.1.

(i) Heat transfer. The variation in Nu, with Re2/Gr, is
shown in Fig. 7. A minimum Nusselt number occurs at
about Re?/Gr, =1 for which buoyant and inertial
forces in the vicinity of the aperture plane are expected
to be of comparable magnitude. With some hindsight
gained from an inspection of the flow details, discussed
below, the minimum in Nu, is explained as follows. As
the free-stream velocity initially increases, hot air
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discharged from the cavity is swept downwards in the
free-stream direction and partly re-entrained into the
cavity. Consequently, the average temperature of
stratified air in the cavity is raised, resulting in reduced
heat transfer from the cavity walls. Further increases in
the free-stream velocity induce a recirculating flow
inside the cavity which gradually destroys the stable
stratification. Eventually, the flow and heat transfer
patterns acquire the characteristics of a shear-driven,
forced convection flow with large, turbulent fluxes.

For very small or very large values of the parameter
Re}/Gr,, the expression for the Nusselt number
characterizing a heated cavity flow is expected to
acquire limiting forms. For large values of Re?/Gr, one
expects an independence of Gr,. Physically this means
that buoyant forces, and hence cavity orientation, are of
negligible importance in formulating an expression for
Nu,. Astraight linejoining the two points calculated for
high values of Re?/Gr, follows the relation,

Nu, = 21.16(Re2/Gr,)*43. 1)

This expression can be rewritten in terms of a Stanton
number by taking Pr = 0.71 and Gr, = 4.4 x 107 which
were held constant throughout the calculations. The
result is

St = 0.0154 Rey 14 (12)

which is in qualitative agreement with the high
Reynolds number semi-empirical correlation obtained
by Haugen and Dhanak [26] for forced convection in
heated cavities of square cross-section :

St = 0.149(5/b)~%1* Re; °25. (13)

To show this we note that, for the conditions of the
calculated flow developing along the upper edge of the
cavity, a developing length |x|/b > 8 is required before
transition to turbulence will occur when Rel/Gr, =

854 (the highest value calculated). Thus, for the
boundary-layer thickness, J, in equation (13) we
take the laminar flow result 6 ~ (vx/u_)"/?, and it is
straightforward to show that

St ~ Re, °18. (14)

Since the —0.14 power dependence of d in equation (13)
was derived for turbulent flow, we should not expect a
complete correspondence between the Re, power
dependence calculated numerically, equation (12), and
that determined experimentally, equation (14).

(i) Flow characteristics. Detailed velocity vector
fields, isotherms, turbulent kinetic energy and
temperature fluctuation contours for mixed convection
are provided in Humphrey et al. [21]. The principal
observations are presented below with a small sample
of the results.

Figures 8 and 9 show the velocity and temperature
fields inside a shear-driven cavity at ReZ/Gr, = 0.85
and 21.3, respectively. For ReZ/Gr, < 0.4 the flow is
dominated by buoyant forces, while for Re?/Gr, > 2 it
is dominated by inertial forces.

At Re} /Gry = 0.85 the flow field is still influenced by
buoyant forces. (Compare with Fig. 3b for pure free
convection.) Hot air leaving the cavity is immediately
redirected by the shearing action of the externally
imposed flow. Figure 9a shows that some of this hot air
is returned to the cavity where the attendant rise in
average temperature is the cause for the reduction in
heat transfer shown in Fig. 7. In contrast to the pure free
convection case(Fig. 3b),at Re?/Gr, = 0.85alltheairin
the cavity flowsin a clockwise direction due to the shear
imposed by the external flow. Notwithstanding,
velocities are very small in the stratified hot air region.

At Re}/Gr,, = 21.3 the flow field shown in Fig. 8b is
dominated by inertial effects and loses any tendency to
be redirected by buoyancy forces. In addition to the

Nu, ~ Rep™
10° — —
N r= ===
e Free convection value
Nuy =407
10' — —
” | N |
102 10" 10° 10' 10°
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F1G. 7. Prediction of Nu, vs Re/Gr, for mixed convection flow in a heated cavity: a/b = 1, a = 45°, Gr, =

44x 107 and AT/T,, = 1.26.
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FiG. 8. Velocity vector plot for mixed convection flow in a heated cavity witha/b = 1,& = 45°,Gr, = 4.4 x 107
and AT/T,, = 1.26. From left to right Re?/Gr, = 0.85 and 21.3.

main rotating flow, small recirculation zones, or eddies,
appear at both of the inner cavity corners. A tendency
for a third eddy to form at the top aperture plane corner
is also evident, but even at ReZ/Gr, =854 flow
separation did not occur. These corner eddies are
typical of wall-driven cavity flows; see, for example,
[27], and both their size and intensity increased with
increasing Re?/Gr,.

The corresponding temperature field in Fig. 9b
shows the dominant influence of forced convection.
Hot air is recirculated along the periphery of the cavity
from which it escapes mainly through molecular and
turbulent diffusion. Large levels of turbulent kinetic
energy (plotted in ref. [21]) were observed in the cavity
aperture plane where shearing production is in-
tense. Part of this turbulence is convected into the
cavity where it enhances the wall heat transfer, the re-
mainder being driven downstream. High levels of
the temperature fluctuations were also confined to the
aperture plane and the cavity walls [21]. The
magnitude of the temperature fluctuations was found
to decrease with increasing ReZ/Gr,, due to the higher
degree of mixing of fluid in the cavity.

In closing this section we note that the approxima-

tions made to simulate the far field boundary
conditions for the mixed convection cavity flows
investigated by Humphrey et al. [2, 3] have yielded
predicted flow patterns and temperature distributions
that are in good qualitative agreement with their
experimental observations [21].

4. CONCLUSIONS

The KEM formulation of Part I of this work was
further extended to predict free and mixed convection
flows in strongly heated, rectangular cavities of vari-
able cross-section and orientation. Relatively good
agreement is obtained between measurements and
predictions of the mean velocity and temperature
distributions in the free convection regime, but the
turbulent kinetic energy and eddy diffusion coefficient
are consistently underpredicted when o = 0°. As a
result, although the relative trends in predicted heat
transfer, as a function of a/b and a, are in agreement
with the available measurements, the Nusselt numbers
differ significantly in their absolute values. Because of
experimental uncertainties it is difficult to assess the
accuracy of the heat transfer calculations. However, the
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F1G.9. Contours of nondimensional temperature (6) for mixed convection flow in a heated cavity witha/b = 1,
o = 45°, Gr, = 44 x 107 and AT/T,, = 1.26. From left to right ReZ/Gr, = 0.85 and 21.3.

uncertainties are such that, were it possible to adjust
for their effects on the experimental data, this
would significantly reduce the discrepancies between
measurements and calculations of the heat transfer and
turbulence quantities, particularly the turbulent kinetic
energy.

The free convection calculations show that,
regardless of orientation and aspect ratio, the cavity
Nusselt number correlates well with Gri®. A
comparison between calculated 2-D and measured 3-D
heat transfer coefficients supports the notion that 3-D
motions strongly affect the heat transfer from the top
and back walls in a cubical cavity.

Calculations of mixed convection in a cavity with
a/b =1 and « = 45° reveal a minimum in the Nusselt
number for Re?/Gr, = O(1). For ReZ/Gr, > 2, the heat
losses from a cavity are strongly influenced by inertial
effects. By ReZ/Gr, > 21.3 the flow field in a heated
cavity is independent of orientation with respect to
gravity and presents all the characteristics typical of a
shear-driven cavity flow.

For both free and mixed convection, the predicted
flow patterns are in good qualitative agreement with
the flow visualization observations of Humphrey et al.
[2, 3]. While their experiments confirm the assumption
of turbulent flow for all the conditions investigated
here, they do not rule out the possibility of a mean flow

unsteadiness that was not detected. This could explain
part of the discrepancy existing between measurements
and calculations of the turbulent kinetic energy and
heat transfer in free convection. This last point is the
subject of continuing research.
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SIMULATION NUMERIQUE D’'UN ECOULEMENT TURBULENT LIBRE.
II—-CONVECTION NATURELLE ET MIXTE DANS UNE CAVITE CHAUFFEE

Résumé—Dans la premiére partie de I'étude deux modéles appliqués a la convection naturelle le long d’une
plaque verticale chaude montrent des résultats précis pour 'écoulement moyen et le transfert thermique. Par
suite, le plus simple des deux (une formulation k—¢ basée sur la notion des diffusivités turbulentes de quantité de
mouvement et de chaleur) est étendu 4 la prévision de la convection naturelle et mixte d’air dans une cavité de
section rectangulaire avec une orientation quelconque. Ceci fait I'objet du présent texte. Les calculs
numériques montrent que les détails de la convection naturelle sont fortement gouvernés par les
caractéristiques du transfert thermique local. Celles-ci dépendent du rapport de forme a/b, de I'angle
d’inclinaison « et du nombre de Grashof Gr,,. Par exemple, une stratification stable de fluide, dans une cavité
inclinée, amortit fortement les fluctuations turbulentes, réduisant aussi les pertes thermiques de la cavité. Des
calculs conduits pour les cas étudiés expérimentalement par Humphrey et al. [ Sandia Report, No. SAND 84-
8192 (1985); Phil. Trans. R. Soc. A316, 57-84 (1985)] montrent un bon accord qualitatif avec les distributions
mesurées de vitesse et de température. Les prévisions du nombre de Nusselt, Nu, donnent des tendances qui
sont aussi en accord avec les mesures. Pour la convection mixte, les détails de ’écoulement deviennent
asymptotiquement indépendants de « quand le rapport des forces d’inertie aux forces d’Archiméde, caractérisé
par Rel/Gry, augmente. Pour a/b = 1 et « = 45°, les prévisons révélent un minimum de Nu,, quand ReZ/Gr,
~ 1. La plupart des configurations complexes de I'écoulement observées expérimentalement sont reproduites
numeériquement, a la fois pour les convections naturelle et mixte.
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NUMERISCHE SIMULATION TURBULENTER AUFTRIEBSSTROMUNGEN—II.
FREIE UND GEMISCHTE KONVEKTION IN EINER BEHEIZTEN VERTIEFUNG

Zusammenfassung—Numerische Berechnungen zeigen, daB die freie Konvektionsstrémung in einer
beheizten Vertiefung stark durch den 6rtlichen Wirmeiibergang bestimmt wird. Die Charakteristik héngt
vom Seitenverhéltnis a/b der rechteckigen Vertiefung, vom Neigungswinkel « und von der Grashof-Zahl Gr,,
ab. Eine stabile Schichtung des beheizten Fluides in einer geneigten Vertiefung dimpft beispielsweise die
turbulenten Bewegungen stark und reduziert auf diese Weise die konvektiven Wirmeverluste. Berechnungen,
welchefiir die von Humphrey und anderen experimentell untersuchten Fille der freien Konvektion ausgefiihrt
worden sind, zeigen eine qualitativ gute Ubereinstimmung mit den gemessenen Geschwindigkeits- und
Temperaturverteilungen. Die vorausberechneten Nusseltzahlen, Nu,, stimmen ebenfalls qualitativ mit den
Messungen tiberein. Fiir gemischte Konvektion hingt die Strémung umso weniger von « ab, je groBer das
Verhiltnis von Tragheits- zu Auftriebskriften, charakterisiert durch ReZ/Gr, ist. Fiir a/b = 1 und a = 45°
zeigen die Vorhersagen ein Minimum fiir die Nusseltzahl, Nu,, wenn Re2/Gr, ~ 1. Viele der komplexen
Strémungsmuster, die experimentell fiir freie und gemischte Konvektion gefunden wurden, sind numerisch
reproduziert worden.

YNUCJIEHHOE UCCIIENOBAHUE NMOABEMHOI'O TYPBYJIEHTHOI'O TEUEHUS—IL
CBOBOJHAA U CMEWIAHHASI KOHBEKLIUS B HATPETOWM TOJIOCTU

Amnorauas—B nepBoit yacTu paboThl NpeNTIOXEHB! ABE MOJEIH pacyeTa CBOGOAHO-H CMEIIaHHOKOHBEK-
THBHBIX TypOyJICHTHBIX NOTOKOB ¢ MaJIbIMH uYHucjaMu PeliHonbaca. CpaBHeHue OaHHBIX M3MEpeHHH M
pacyeToB AJs CBOOOAHOM KOHBEKIHM y HArPETON BEPTUKAJIBHON MJIOCKOR IIACTHHBI MOKA3a/H, YTo 0be
MOJENH NAIOT TOYHBIE PE3YJbTAThl MJIA CPEIHHX 3HAYEHHH XapakTEpPHUCTHK MOTOKA M TEIIONEPEHOCaA.
Bosnee npocras u3 aByx Mogeie# (k—e-Momeb, OCHOBaHHAS HA MOHATHH TYPOYJEHTHOH TemmepaTypo-
NPOBOJHOCTH [/ MMIYJbCa M TEMJla) NPUMCHEHA IJIA pacyeTa YCTONYMBBIX CBOGOAHO-M CMEIIaHHO-
KOHBEKTHBHBIX IIOTOKOB BO3/yXa B CHJILHO HarpeTOH MOJIOCTH IPOKW3BOJIbHBIX IPSIMOYTOILHOTO CEYEHHS
H opueHTaluH. YHuCiIeHHEIe Pe3yIbTaThl MOKA3BIBAIOT, YTO HA OTHAEJbHBIE YYACTKH CBOGOAHOKOHBEKTHB-
HOTO NOTOKAa CHJBLHOE BJIHAHHME OKAa3bIBaeT JIOKAJIbHBIH TEMJIONEPEHOC, XapakTEPHCTHKM KOTOPOTro
3aBHCAT OT OTHOLIEHHS CTOPOH MOJOCTH a/b, yria HaxkyioHa o M uHcna I'pacroda Gr,. Hampumep,
ycToHuMBas CTpaTH(HKALMA HATPETOHR KHAKOCTH BHYTPH HAaKJIOHHOM MOJOCTH CH/ILHO MOAABJAET Typ-
GyneHTHbIE (IYKTyallHd, yMeHblllas TakMM OOpa3’oM KOHBEKTHBHLIE IOTEPH TeIUIa H3 IMOJOCTH.
PacueTsl, npoBeaeHHble Xammnpeem | ap. [Sandia Report No. SAND 84-8192 (1985); Phil. Trans. R. Soc.
A316, 57 (1985)], moka3anu xopollee KaueCTBEHHOE COBMANCHHE YHCIEHHBIX AAHHBIX C U3MEPEHHSMH
paciipeieJIEHNH CKOPOCTH B TeMmmnepaTtypsl, yucna Hyccensra Nuy. [l cMelIaHHOM KOHBEKUMH CTPYK-
Typa NOTOKA CTAHOBHTCA aCHMITOTHYECKH HE3aBHCHMOM OT o, MOCKOJIbKY OTHOLLIECHHE MHEPLUHOHHBIX H
NOBEMHBIX CUII, XapakTepusyeMoe ReZ/Gr,, pacter. Ina a/b = 1 1 o = 45° paccUMTaHO MHHAMAJILHOE
3uavenne Nu, npu Rel/Gr, ~ 1. TIDUBOAUTCS MHOTO MPHMEPOB YHCIEHHOTO MCCIEIOBAHASA CIOXHBIX
TeHeHHIt.



