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Abstract-In Part I of this study two models were developed for predicting free and mixed convection low 
Reynolds number turbulent flows. Detailed comparisons between measurements and predictions for the case 
of free convection along a heated, vertical, flat plate showed that both models yield accurate results for the 
mean flow and heat transfer. As a result, the simpler of the two (a k-E formulation based on the notion of eddy 
diffusivities for momentum and heat) was extended to predict steady free and mixed convection flows of air in a 
strongly heated cavity of arbitrary rectangular cross-section and orientation. This is the subject of the present 
communication. 

Numerical calculations show that the details of free convection flow in a heated cavity are strongly governed 
by the characteristics of the local heat transfer. The characteristics depend on the cavity aspect ratio, a/b, the 
inclination angle, a, and the Grashof number, Gr,. For example, stable stratification of heated fluid inside a 
tilted cavity strongly dampens the turbulent fluctuations, thus reducing convective heat losses from the cavity. 
Calculations performed for the free convection cases investigated experimentally by Humphrey et al. [Sandia 
Report No. SAND 84-8192 (1985); Phil. Trans. R. Sot. A316,57-84, (1985)] show good qualitative agreement 
with measurements of the velocity and temperature distributions. Predictions of the Nusselt number, Nu,, 
display trends which are also in accord with the measurements. For mixed convection, the details of the flow 
become asymptotically independent of a as the ratio of inertia to buoyant forces, characterized by Re:/Gr,, is 
increased. For a/b = 1 and a = 45”, predictions reveal a minimum in Nu, when Rei/Gr, N 1. Many of the 
complex flow patterns revealed experimentally, for both free and mixed convection, are reproduced 

numerically. 

1. INTRODUCTION 

1.1. The problem of interest and objective of this study 

CONSIDER a two-dimensional, partial enclosure such 
as the one of square cross-section shown in Fig. 1, the 
interior surfaces of which are heated to a temperature 
T, above that of the environment which is at T,. This 
configuration is here referred to as a ‘heated cavity’. It 
arises frequently in systems of engineering interest 
including solar cavity receivers, the ventilation of 
rooms and corridors, fire and smoke propagation 
through buildings and the cooling of electronic 
components. 

In the absence of an externally imposed flow, 
buoyant forces will induce fluid motion within the 
cavity. The nature and intensity of this motion will 
depend on the cavity cross-section, a/b, its orientation, 
c(, a characteristic Grashof number for the flow, Gr, = 

~BmATb3/v~, and the overheat ratio, AT/T, = (T,,,- 

T,)/T,. The Grashof number determines whether 
the flow will be laminar or turbulent, and the oveheat 
ratio determines whether a constant or variable 
physical properties condition applies. If AT/T, is 
small, then the Boussinesq approximation can be 
assumed [ 11. 

In the presence of an externally imposed flow, of 
speed u, and of angle 4 with respect to the cavity 
aperture plane, inertial forces compete against the 
buoyancy for control of the flow. The Reynolds 
number, Re, = u,b/v,, now becomes an important 
parameter, and this ‘mixed’ convection regime is 

characterized by the ratio Re:/Gr,, a relative measure 
of inertial to buoyant forces in the flow. 

This study concerns the numerical calculation of 
fully elliptic, turbulent, steady and two-dimensional (in 
the mean) flows in strongly heated cavities of 
rectangular cross-section for arbitrary values of a, 4, 
a/b, ReiIGr, and AT/T,. The fluid medium is air for 
which the Prandtl number is Pr = 0.71. Because the 
basic element of a heated cavity is the flat plate, this 
configuration is also of special interest. 

The accurate calculation of free convection flow 
along a heated, flat plate is considered to be a logical 
first step towards the accurate numerical simulation of 
heated cavity flows. Part I of this work was devoted to 
this problem. Two models of turbulence were developed 
for predicting the characteristics offree convection flow 
along a heated, vertical, flat plate. Both models are 
variable-property, low Reynolds number formulations 
which dispense with a priori prescriptions of near-wall 
relations for velocity and temperature. Instead 
numerical calculations are performed on refined grids, 
well into the viscous sublayer region of the flow. One 
formulation, the KEM, is based on the notion of 
spatially dependent, isotropic eddy diffusivities for the 
turbulent transport of momentum and heat. The 
second, the ASM, obtains the turbulent fluxes directly 
from a system of algebraic equations derived by 
neglecting the convective and diffusive transport of 
these fluxes in their respective conservation equations. 
There are no limitations in the models which preclude 
their application to mixed convection flows. 
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NOMENCLATURE 

a cavity width 
A, area of cavity aperture plane 
b cavity height 
c length of the cavity normal to x-Y plane 
C, specific heat at constant pressure 
C, constant in equation (3) 
D turbulence quantity related to E through v, 

(au;/ax,)(au;/ax,) = E/V 

9 gravitational constant 

9i component i of the gravitation vector 
G buoyancy production of turbulent kinetic 

energy, p’ujgi 
Gr, cavity Grashof number (with AT = T, - T,), 

&,ATb3/v2, 
h cavity heat transfer coefficient (based on 

aperture area) 
k turbulent kinetic energy, ufu; /2 
1 length scale of energy-containing eddies, 

equation (6) 
n coordinate direction perpendicular to a 

surface 
Nu, cavity Nusselt number, equation (9), 

hbly, 
Nu’ alternative definition of the cavity Nusselt 

number, equation (10) 

P pressure 
Pr Prandtl number, &,ly 
Pr, turbulent Prandtl number 
Q,, heat transfer through cavity@&rture plane 

Q, total heat transfer from cavity walls 

u, characteristic shear stress velocity, m 
u, velocity of wind approaching a cavity 
V velocity component in y-direction 
X coordinate direction, defined in Fig. 1 

Y coordinate direction, defined in Fig. 1 

Y+ dimensionless coordinate, y/y, 

Y, wall-region length scale, v/u, 

Greek symbols 

; 

cavity inclination angle, defined in Fig. 1 
coefficient of volume expansion, l/T, 

Y thermal conductivity 
6 boundary-layer thickness 
AT characteristic temperature difference, 

T, - T, ; taken as T, - T, in a cavity 
E isotropic dissipation of turbulent kinetic 

energy, VD 
qT inner region length scale, equation (5), 

Cbm/~r)2/Wm~~11’3 
f3 nondimensional temperature, 

(T- T,)I(T,-- T,) 

p molecular viscosity 

PI turbulent viscosity 
V molecular kinematic viscosity 

P density 
u+ turbulent Prandtl number for scalar $J 

r w wall shear stress 

4 arbitrary scalar quantity; also orientation 
of wind approaching a cavity. 

4, wall heat flux 
R gas constant for air 
Re, cavity Reynolds number, u,b/v, 
St cavity Stanton number, h/(p,C,u,) 

Superscripts 
’ fluctuating quantities _ 

mean quantities. 

T temperature 
T, arithmetic average of the three cavity wall 

temperatures 
T, ambient temperature (293 K) 
u velocity component in x-direction 

ui velocity component in i-direction 

Subscripts 

i,.i spatial indices 
t turbulent quantity 
W wall condition 
co ambient condition. 

Detailed comparisons between measurements and 1.2. Free and mixed convection in the cavity 
predictions presented in Part I of this study show 
clearly that the algebraic stress model (ASM) is capable 
of resolving correctly the anisotropic characteristics of 
turbulent free convection along heated, flat plates. 
However, this model is only marginally superior to the 
k-e model (KEM) when consideration is restricted to a 
prediction of the mean flow and heat transfer. As a 
result, it was decided to extend and apply the simpler 
KEM formulation to simulate free and mixed 
convection flows in strongly heated cavities ofarbitrary 
rectangular cross-section and orientation. This is the 
subject of the present communication. 

conjiguration 
The following is a summary of those studies reviewed 

by Humphrey et al. [2, 31 most meaningful to the 
present work. 

Motivated by an interest in fire and smoke spread 
problems, Ku et al. [4], Markatos et al. [S], and Kumar 
and Cox [6] have applied high Reynolds number forms 
of the k-c turbulence model to predict two-dimensional, 
buoyancy-driven flows in cavity-related configura- 
tions. Ad hoc extensions to the low Reynolds number 
k-e model of Jones and Launder [7] have been 
formulated by Fraikin et al. [S] and Sagara [9], but 
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ti=um,V=O,T=T, 

k specified 

D estimated from equation (6) 

(mixed convection) 

On all solid walls: 

Ei=VZ 0 

k=O 

(free convection) 

._______a-_____l I 
(mixed convection) 

k specified 

D estimated from equation (4) 

(free convection) 

FIG. 1. Boundary conditions for a heated cavity in free or mixed convection regimes. For mixed convection, the 
upper and lower edges of the cavity are completely adiabatic. 

they have been applied only to fully enclosed, 
rectangular configurations. All of the above studies 
invoke the Boussinesq approximation thus limiting the 
results to low overheat ratios. It appears that numerical 
models have not been extensively developed for 
predicting free and mixed convection turbulent flows in 
cavities of arbitrary orientation. 

The corresponding state of experimentation is 
equally incomplete. Hess and Henze [lo] have 
performed experiments using flow visualization and 
the laser-Doppler velocimeter (LDV) technique in a 
three-dimensional cavity at relatively low values of 
AT/T,. Only the back wall of their cavity was heated. 
The use of water as the fluid medium allowed them 
to attain Rayleigh numbers ranging from 2 x 10” 
to 2 x 10”. They observed that the flow became tur- 
bulent at a Rayleigh number of about 7 x 10”. How- 
ever, the data in ref. [2] suggests that this transition 
value can be considerably lower when heating (with its 
attendant destabilization effects) is applied to upward 
facing horizontal or inclined walls. 

In consecutive investigations, Penot [ll] and 
Mirenayat [12] have studied the free convection of air 
in a cubical cavity with all five walls equally heated to 
overheat ratios ranging from 0.04 to 0.47. Plow 
visualization and limited velocity measurements using 
the LDV technique were performed. However, very 
extensive heat transfer measurements were made as a 
function of Grashof number and cavity orientation 
from which Mirenayat [12] derived the following 
Nusselt number correlation based on the aperture 
plane area : 

Nub = a,Grg’ (IO’ < Grh < 4x 109) (1) 

where Gr, is the cavity Grashof number as defined in 
the Nomenclature. In equation (l), a, and a2 are 
parameters which depend on the cavity inclination 
angle, cc; b is the cube side. Typically, 0.15 < a, < 0.60 
and 0.30 -C a, < 0.37, strongly supporting a l/3 power 
dependence on Gr,. Kraabel[13] has also investigated 
the free convection of air in a cubical cavity with all five 
walls heated. The large characteristic dimension of the 
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cavity (2.2 m) permitted obtaining values of Gr, as large 
as 1.2 x 10” for overheat ratios ranging between 0.39 
and 2.55 approximately. Measurements in the aperture 
plane were used to determine the air temperature, 
velocity, enthalpy flux and radiation heat flux 
distributions. Convective heat losses from the cavity 
were derived from these data. The aperture plane 
Nusselt number correlation obtained by Kraabel [ 131 
is : 

Nu, = 0.44 Gr~‘3(Tw/Tm)o~‘8 (lo7 < Gr, < 1.2 x 10”). 

(2) 

This correlation is valid only for the inclination angle 
CI = O”, but it is in very good agreement with Mirenayat’s 
[12] lower overheat ratio results for which a, = 0.465 
and a, = 0.33 when CL = 0”. One of the main con- 
clusions to be drawn from the measurements in refs. 
[12] and [13] is the length scale independence of 
the cavity convective heat transfer coefficient. 
Measurements and calculations of the heat transfer 
coefficient for turbulent free convection along a vertical 
flat plate, discussed in Part I of this work, also show this 
length scale independence. 

Humphrey et al. [2, 31 have performed a detailed 
experimental study of the turbulent flow and heat 
transfer in a two-dimensional, rectangular cavity with 
AT/T, = 1.26 and Gr, = 4.4 x lo7 for various values of 
the cavity aspect ratio and orientation. LDV 
measurements of the velocity and turbulent stress 
components were obtained for the free convection 
regime. Measurements of temperature and extensive 
flow visualization were performed for both the free and 
mixed convection regimes. The numerical simulation of 
their experimental observations has been the primary 
objective of the present work. 

2. TURBULENCE MODEL AND 

NUMERICAL PROCEDURE 

The turbulence model used for the 
calculations is the variable physical property KEM 
closure described in detail in Part I of this study. In this 
closure the turbulent flux of any fluctuating scalar 
quantity 4 (ui, 7; k, etc.)is related to the spatial gradient 
of the corresponding mean quantity, 0, via a spatially 
dependent eddy diffusion coefficient. In this generaliz- 
ation of the Boussinesq assumption the eddy diffusion 
coefficient for 4 given by 

where it is tacitly assumed that k’/’ and k3/*/e are 
proportional to the turbulent velocity and length 
scales, respectively. In equation (3), Q+ is the turbulent 
Prandtl number for the quantity 4 and, like C,, it is a 
model constant. (All the KEM model constants are 
given in Part I of this work.) 

Because the fluid medium is air, a perfect gas 
equation ofstate is used to relate variations in density to 

variations in temperature. A simple relation for the 

mean square of the temperature fluctuations, T’*, is 
derived from its transport equation under the 
assumption of an equilibrium flow. 

Empirical wall relations for velocity and temperature 
are deliberately avoided in the formulation. Instead, the 
low Reynolds number approximation initially pro- 
posed by Jones and Launder [7] is extended and 
improved. As explained in detail in Part I of this work, 
in this approach numerical calculations are performed 
all the way into the viscous sublayer region of the flow. 
Damping of the turbulent fluctuations near walls is 
simulated by requiring that the turbulent viscosity vary 
according to a Van Driest-type relation. 

Finite-difference forms of the elliptic transport 
equations for momentum, energy, turbulent kinetic 
energy and its rate of dissipation are solved on a 2-D 
nonuniform grid using an under-relaxed iteration 
technique that is implicit in time. The solution 
procedure is the REBUFFS code developed by 
LeQuere et al. [14], extended to include the KEM 
formulation as described in Part I of this work. No 
special difficulties were experienced in obtaining 
steady-state, grid-independent results for the con- 
ditions investigated. 

2.1. Boundary conditions 
The solution of the system of elliptic equations 

describing the flow in a heated cavity requires a 
specification of appropriate boundary conditions for 
the unknown variables along the boundaries of the 
calculation domain. Figure 1 shows the conditions used 
for the free and mixed convection calculations, 
respectively. 

(i) Solid walls. The specification ofwall conditions for 
velocity and temperature in earlier studies of natural 
convection in heated cavities (and enclosures) have 
been inconsistent and sometimes vague; contrast, for 
example [S, 8,9]. Sagara [9] does not explain clearly 
how the wall region is treated. Law-of-the-wall 
relations were tacitly assumed by Markatos et al. [S]. In 
spite of the fact that Fraikin et al. [S] pursue a low 
Reynolds number approach, looking at the way the 
boundary value for dissipation was imposed, it appears 
that the first calculation node was placed in the inertial 
flow region. In all three studies it is unclear how the wall 
condition for temperature was dealt with. As pointed 
out in Part I of this work, even in pure free convection 
there are no universally applicable power-law relations 
for velocity and temperature, since the general 
dependence on temperature and surface orientation of 
the coefficients in such relations is simply unknown. 

Wall boundary conditions in the present cavity 
calculations were prescribed in the same way as for the 
flat plate, described in Part I of this work. The 
procedure requires specifying the value of the turbulent 
kinetic energy at the wall. The dissipation condition, 
together with no slip, impermeable wall conditions for 
velocity and the wall temperature (known from the 
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experiments) are summarized below : 

Gi = 0 

ii;= T, 

k=O (4) 

L)=2 G” 
( > W 

where Tw denotes a constant value or a prescribed 
variation of wall temperature, and n denotes the 
coordinate direction normal to the wall in question. 
For the free convection calculations, the foilo~ng 
values for T, measured by Humphrey et al. [Z, 33 were 
imposed along the inside walls of the heated cavity: 
7&, = 611 K, Tack = 673 K, Tboftom = 673 K. In the 
experiments these values did not change significantly 
with a/b or LY. Similarly, the temperature ~stributions 
measured along the upper and lower heated edges of the 
cavity were imposed. For the parametric mixed 
convection calculations, all walls inside the cavity were 
fixed to T, = 643 K, the entire upper and lower edges 
being assumed adiabatic. 

An estimate of the thickness of the viscous sublayer 
region is needed to maintain the necessary grid 
refinement in the numerical claculations. For free 
convection this is derived from the flat plate correlation 
obtained by George and Capp [ 151 who find 

1.7$=y+E (5) 
qT 

In Part I of this work it is shown that y+ is 
approximately 4. During the course of calculation the 
grid refinement is continuously checked against this 
criterion. 

(ii) Thefarfield (free boundaries). 
(a) Free convection. An accurate way of specifying far 
field boundary values for velocity, based on the analysis 
of the flow induced by a heated point source, has been 
described by LeQuere et al. [I43 in relation to 
predicting laminar free convection flow in a heated 
cavity. It was shown in ref. [14] that, while a realistic 
calculation of the far field flow pattern does require 
careful attention to the specification of the far field 
boundary conditions, the characteristics of the flow 
inside and immediately in front of a cavity do not differ 
significantly from those calculated by simply specifying 
zero normal gradients of velocity everywhere along the 
far field boundaries. Since the free convection cases 
investigated in refs. [2,3] are the ones of concern to this 
study, boundary conditions were implemented which 
are in closest accord with those experimental 
observatjons. Thus, for pure free convection, zero 

- - 
normal gradients for u, u and T were specified on all 
three free boundaries, A small value of turbulent kinetic 
energy was specified by setting k = 0.007 m2 S-I on the 
upstream free boundary (boundary ‘1’ in Fig. 1). The 
value of D on this boundary was estimated by means of 
equation (4). On the other two free boundaries the 
normal gradients of k and D were set to zero, The 

condition for sufficiently small gradients of the 
variables on the free boundaries was guaranteed by 
determining appropriate positions for the latter 
through a trial and error procedure. Further discussion 
concerning the accuracy of this approach is provided in 
Section 3.2, subsection (ii). 

(b) Mixed convection. In contrast to the free convection 
case, far field mixed convection boundary conditions 
werenot determinedin theexperiment ofrefs, [2,3] and 
it was necessary to approximate these. A uniform flow 
at ambient temperature was specified on the upsteam 
free boundary (boundary ‘3’ in Fig. 1). As for free 
convection, a small value of k was specified on this 
boundary by setting k = 0.007 m2 s-‘. The value of D 
was not calculated from equation (4). Instead, it was 
estimated from the inviscid approximation [16] 

s=vD&Y (6) 

in which the values of A and I were set to 1 and &Olb, 
respectively. Zero normal gradients were prescribed for 
all variables on the other two free boundaries. 

2.2. Testing and grid re~neme~t 
Besides the heated cavity results presented and 

discussed in the next section, additional tests were 
performed to: (a) validate various purely numerical 
aspects of the calculation procedure; and (b) check the 
performance of the KEM model for two limiting flow 
conditions (free convection along a heated flat plate and 
forced convection in a heated cavity). Purely numerical 
aspects were checked by reproducing some of the 
heated cavity laminar flow cases reported in LeQuere et 
ul. [14], and the limited free convection velocity 
measurements of Sernas and Kyriakides [17] ; and by 
calculating the time-dependent characteristics of 2-D 
and 3-D wall-driven laminar flows in an enclosure with 
and without an initially imposed, stable stratification. 
Results for the latter tests, reported in Koseff et ai. [18], 
show that the 2-D calculations are in very good 
agreement with the measurements and predictions of 
others, but that the 3-D calculations are prone to 
numerical diffusion. Calculations pertaining to 
turbulent free convection along a heated, flat plate have 
already been presented and discussed extensively in 
Part I ofthis work. Predictions offorcedconvectionin a 
heated cavity, corresponding to the experiment of Fox 
[19] and the mixing length calculation by Chin et al. 
[ZO], are provided in Humphrey et al. [21], where good 
agreement is reported with respect to the data available 
for velocity and temperature. 

The outcome of this extensive testing is the 
conclusion that, subject to the grid distribution 
considerations discussed below, the results of the next 
section are essentially free of any serious numerical 
inaccuracy so that significant discrepancies arising 
between measurements and calculations must be 
explained in terms of experimental and/or turbulence 
model uncertainties. 
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Numerical explorations showed that an unevenly 
spaced grid composed of 69 x 53 nodes (in the x- and y- 
directions, respectively) was sufficient to yield grid- 
independent cavity flow calculations. Of these nodes, 
31 x 31 were contained in the cavity with not less than 
five nodes always located within the respective wall 
viscous sublayers. A factor of 1.3 was used for 
expanding the grid from each wall in the cavity. With 
this scheme about six nodes ended up between the wall 
and the position of maximum velocity along each wall. 
All calculations were performed on the CDC 7600 
machine at the Lawrence Berkeley Laboratory. 
Typically, 490K octal words of computer storage and 
750 iterations (1.1 s per iteration) were needed to obtain 
converged results. The criterion for convergence is 
explained in Part I of this work. For the cavity 
calculations the additional condition was imposed that 
the total heat flow from the cavity walls should equal 
that through the aperture plane to within 1%. 

3. RESULTS AND DISCUSSION 

3.1. Preliminary considerations 
The KEM formulation presented in Part I of this 

work is extended here to. retain direct buoyancy 
contributions to the balances of turbulent kinetic 
energy and dissipation [the terms represented by G 

and C,,GD/k in equations (13) and (14) in Part I]. 

The quantity p’uj in the buoyancy production of k, 

G = p’ufgi, was modeled by combining equations (6) 
and (9) in Part I to yield the following gradient 
approximation : 

The next two subsections present results and 

discussions of KEM predictions of free and mixed 
convection flows in heated cavities. The free convection 
calculations correspond to the experimental conditions 
investigated by Humphrey et al. [2, 33 in which 
Gr, = 4.4 x 10’ and AT/T, = 1.26 with: a/b = 1, u 
=O”; a/b=l, u=45”; and a/b = 0.5, ct = 0”. An 
investigation of the influence of the parameters a/b, tl 
and AT on cavity Nusselt number is also presented. 
Mixed convection flow has been computed only for the 
case a/b = 1, x = 45”; but varying the free-stream 

velocity such that Rei/Gr, = 0.4, 0.85, 21.3 and 85.4, 
respectively. 

1 U. aT 3.2. Free convection 
I I I . 

P Wi = jT Pr, axi 9i. 

It was pointed out in Part I that the application of 
equation (7) to heated, vertical, flat plates leads to a 
physically inconsistent contribution to the balance of k. 
However, it was also shown that the error incurred 
through doing this is small, due to the dominance ofthe 

shearing production of k. By contrast, equation (7) does 

provide a physically consistent approximation for the 
buoyant production of k along heated, horizontal and 
inclined, flat walls. Calculations discussed below show 
that in the heated cavity configuration, regardless of 
orientation, extensive portions of the flow have a large 
component of the temperature gradient aligned with 
the direction of gravity. As a consequence, (7) is 
expected to provide a useful approximation for the 
calculation of G in the k and E equations. 

Values for the constant C,, in the buoyancy term in 
the dissipation equation have been determined for 
isolated vertical (C,, = 1.44) and horizontal (C,, = 
0.288) walls by Rodi [22]. The correct value for a wall of 
arbitrary orientation is not known. In their studies, 
involving the flows in a heated cavity and an enclosure, 
respectively, Markatos et al. [S] and Sagara [9] neglect 
the buoyant contribution to dissipation altogether 
(C,, = 0). By contrast, Fraikin et al. [S] use C,, = 0.7 
in their enclosure calculations. None of these studies 

involved inclined walls. Lacking further knowledge 
concerning an appropriate value for Cc3 for the walls in 
a cavity of arbitrary orientation, three values (0.7,0.9, 
1.1) were tested. The value 0.9 is roughly the average of 
the values for isolated vertical and isolated horizontal 
walls. The values 0.7 and 1.1 were used to explore the 
effects on the flow of inducing a relative decrease and 
increase respectively in the buoyant contribution to 
dissipation. Turbulence quantities (such as k and E) and 
the heat transfer were found to decrease with increasing 
values of Ca3, but the effects on mean velocity and 
temperature were relatively minor. The cavity Nusselt 
number computed using C,, = 0.7 was 8.3% larger 
than the value computed using C,, = 1.1. Of the values 
tested, C,, = 0.7 provided the most consistent overall 
agreement with the quantities measured by Humphrey 
et al. [2,3] on the aperture plane of their cavity. This 
was the value used in the present calculations. 

The structure of the flow inside a heated cavity 

depends strongly on the cavity orientation and aspect 
ratio. The size and intensity of the recirculating flow 
region induced at thelower corner of the aperture plane 
depends primarily on the inclination angle, CL, of the 
cavity. However, for shallow cavities (a/b < 1) the 
reattachment location of the separated flow also 
depends on the cavity aspect ratio. The stable 
stratification of heated fluid, and hence the damping of 
turbulent fluctuations in the cavity, depend on both u 
and a/b. The combination of these and related complex 
flow characteristics determines the convective heat loss 
from the cavity. Following a summary of some general 
heat transfer results, detailed numerical predictions for 
the experimental conditions investigated in refs. [2,3] 
are examined. 

(i) Heat transfer. Integration of the energy equation 

over the rectangular control volume bounded by the 
three heated cavity walls and the aperture plane yields : 

c* s (@+p’v’)TddA+C, p’T’vdA 
A0 s 

-?:.(?+;$)$dA = 0, (8) 

where A, is the area of the cavity aperture and Q,,, is the 
total heat conduction from the three heated cavity 
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walls. The LHS of equation (8) represents the heat 
transferred through the aperture plane, denoted by Q,,. 
(This, as opposed to ew, was the quantity estimated 
in ref. [2] from the LDV measurements of 6) The 
aperture plane Nusselt number is evaluated numeri- 
cally as, 

Nub=+& 
m 

where c is the length of the cavity normal to the x-y 
plane, AT = (T, - T,), and T, is the average of the three 
wall temperatures, T, = (7;,, + Tback + Tb,,tom)/3. 

Table 1 provides a comparison between measure- 
ments and predictions of Nu, for conditions 
corresponding to the experimental study. Also shown 
in the table are the Nusselt numbers predicted for the 
individual walls for each of the cases investigated. The 
predictions show that the heat transfer from the top 
wall is always less than from the other two walls for both 
aspect ratios and orientations. Inclining the cavity 
significantly decreases the heat transfer from both the 
top and the back walls, due to the reduction in speed of 
the fluid along these tilted walls and to the stable 
stratification offluid trapped in the cavity. By contrast, 
the heat transfer from the bottom wall, whose heated 
surface is tilted facing upward, is slightly increased. The 
heat transfer from the back wall in the shallow cavity is 
greater than that from the back walls in the deeper 
cavities. This is due to the impingement on the back wall 
of the shallow cavity of part of the flow which separates 
at the bottom inlet corner ; a phenomenom which is not 
observed in cavities with a/b 2 1 for which flow 
reattachment always takes place completely on the 
bottom wall. As a result it may be concluded that while 
the total convective heat loss from a shallow cavity can 
exceed that from a deep cavity, inclining a cavity should 
always work to reduce the total convective loss. 

Although the trends in the predicted aperture plane 
Nusselt numbers are consistent with the measurements, 
the absolute values differ significantly. A detailed error 
analysis in ref. [2] shows that the experimental Nusselt 
numbers, calculated by assuming 

in equation (9), are prone to systematic uncertainties 
which, unfortunately, are difficult to quantify. They 
arise mainly from nonuniform seeding and weak but 
significant three-dimensionality in the flow. While 
these two effects introduce only a small deviation in the 
individual measurements of velocity, their cumulative 
effect on the calculation of Q,, is potentially serious. It is 
shown [Z] that the resulting uncertainties can account 
for a systematic underestimation of the heat transfer 
through the cavity aperture plane (by as much as 50% 
when a/b = 1, c( = 0’). Given the accuracy with which 
the KEM formulation predicts the mean flow and heat 
transfer characteristics pertaining to free convection 
along a vertical, flat plate, and forced convection in a 
heated cavity, one is tempted to blame the experimental 
uncertainties for the Nu, discrepancies shown in Table 
1. But caution must be exercised since it will be shown 
below that, although fairly good predictions are 
obtained on average for the free convection velocity 
and temperature distributions in heated cavities, the 
discrepancies observed in the predictions of these 
variables can be explained in terms of an underpredic- 
tion of the eddy diffusion coefficient, p,. The resultant 
underprediction of turbulent diffusion of momentum 
and heat between cold and hot fluid respectively 
entering and leaving the cavity will lead to an 
overprediction of Nu,. 

Figure 2a shows the dependence of Nu, on Gr, for 
free convection in heated cavities with the same 
orientation but different aspect ratios. The points, 
joined by continuous lines in the figure, were calculated 
by varying the aperture height of the cavity (b = 0.1,0.2 
and 0.3 meters) for each aspect ratio. As anticipated 
from earlier discussion, for a given Grashofnumber it is 
seen that the convective heat loss from the shallow 
cavity is the largest, followed by the square and deep 
cavities, respectively. A dependence of the Nusselt 
number on Grf3’ is observed for the three aspect ratios, 
over the range 4.8 x 10’ < Gr, < 1.3 x 109. This result 
suggests that the cavity heat transfer coefficient, h, is (at 
most) only a weak function of the characteristic length 
scale, b. This numerical finding for 2-D cavities is in 
close agreement with the length scale independence of 
the heat transfer coefficient observed experimentally in 
3-D cavities ; see Section 1.2 and [ 12, 13, 231. 

Table 1. Measured and predicted Nusselt numbers for the free convection cavity flow 
experiment of ref. [2] 

a/b = 0.5, a = 0” ajb=l,a=O” a/b = 1, a = 45” 

top wall 18.87 13.77 4.34 
NU, back wall 23.24 21.15 13.45 

bottom wall 22.89 21.68 22.94 

N% prediction 65.01 56.61 40.71 
measurement 54.1 f 3.8 27.2 & 3.2 16.6k3.2 

Nt+=(j-~y~dl)/,AT=~ 

where i denotes the wall considered, n is normal to the wall and I is tangent to the wall. 
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FIG. 2a. Prediction of Nu, vs Gr, for free convection flow in a 
heated cavity: a = 0”; AT/T, = 1.19; a/b = 1.5, 1 and 0.5. 

The effect on heat transfer of varying the cavity 
orientation for conditions corresponding to a/b = 1 
and a low overheat ratio, AT/T, = 0.17, are shown in 
Fig. 2b. The points joined by dotted lines in the figure 
are the calculated results. Also shown are the best fits to 
the experimental measurements of ref. [ 121 for a heated, 
cubical cavity at the same two inclination angles. In the 
figure, the definition for the Nusselt number, Nu’, used 
in ref. [12] is adopted. It is based on the total heated 
internal surface area, S, and is given by 

Nu’ = &. 
m 

(10) 

For a cube S = 5L2 where Lis the cube side. Both sets of 
results in Fig. 2b show that increasing the cavity 
inclination angle, a, decreases the convective heat 
losses. As before, both the predictions and measure- 
ments support a l/3 power dependence of Nu’ on Gr,. 
The agreement between the 2-D calculations and the 3- 
D measurements of Nu’ is unexpected and misleading 
since it is known [ 131 that the mean flow emerging from 

I I I 

IO rd 

FIG. 2b. Prediction (dotted lines) of Nu’ vs Gr, for free 
convection flow in a heated cavity: a/b = 1, AT/T, = 0.17, _ - 
c( = 0” and 45”. Best fits (continuous lines) to the measure- 
ments of Mirenayat [12] in a cubical cavity are also shown. 

a cubical cavity is strongly three-dimensional and this 
must influence the heat transfer. Individual wall 
calculations for the conditions of Fig. 2b [21] confirm 
this point. The calculated Nu for the top and back walls 
of the heated 2-D cavity are considerably larger than 
the values measured for the cube. The smaller rates of 
heat transfer from these walls in the cube are attributed 
to the higher characteristic temperature achieved by 
the air, due to 3-D mixing. The closeness of the results in 
Fig. 2b must be ascribed to the additional heat transfer 
from the two side walls in the cubical cavity which 
renders the surface-averagedlosses roughly equivalent. 

(ii) Flow characteristics. Due to space limitations, we 
have chosen only the case with a/b = 1 and c( = 0” for 
detailed examination here. However, where ap- 
propriate some of the results for the other two cases 
investigated (a/b = 1, c[ = 45” and a/b = 0.5, CL = 00) 
will also be mentioned. Complete results for all three 
cases are available in ref. [21]. 

Plots of the velocity vector fields and of temperature 
for all three cases are shown in Figs. 3 and 4, 
respectively. Large regions of recirculating flow arise 
along the bottom cavity wall when tl = O”, and in all 
cases reattachment occurs on the bottom wall. For the 
shallow cavity this produces a striking downward 
redirection of part of the flow in the shear layer 
impinging on the back wall. This pattern has been 
observed in flow visualization experiments [Z, 31. When 
a = 0” a second (smaller) region of recirculating flow 
arises downstream of the aperture plane top corner, 
where the hot air is discharged from the cavity. 

Inspection of the figures shows that tilting the cavity 
forward significantly reduces both the magnitude and 
extent of the buoyancy-induced motion within the 
cavity. In spite of the net through-flow, trapped hot air 
is stably stratified inside the tilted cavity and works to 
slow down the mean motion and dampen the turbulent 
fluctuations. Unable to penetrate the stably stratified 
pool of fluid, air rising along the inclined back wall 
skirts past it to emerge from the cavity. This shearing 
motion, combined with a weaker buoyancy driven 
motion within a thin layer of fluid adjacent to the tilted 
top wall, induces a weak counter-clockwise recircu- 
lation of the hot air in the pool. 

Calculations of the turbulent kinetic energy and of 
the temperature fluctuations (available in ref. [Zl]) 
show large values for these quantities along the bottom 
and back walls of the cavity with a/b = 1 and tl = 0”. In 
both of these regions the shearing production of k, and 

hence the production of T”, is large. Along the top wall, 
stable stratification and wall-damping significantly 

reduce the levels of k and T”. The highest levels of 
turbulent kinetic energy arise where the hot air is 
discharged from the cavity. This is due to shearing 
production of k as the air turns and accelerates around 

the top corner. By contrast, large values of T” are 
--X not observed in this region [where T - K (aF/lay)‘] 

because of the strong reduction in aT/ay by turbulent 
diffusion. The calculations show that large portions of 
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FIG. Sa. Aperture plane profiles of measured (points) and predicted (lines) x- (C) and y- (6) components 
of velocity and turbulent kinetic energy(k) for free convection flow in a heated cavity : a/b = 1, a = o”, Gr, = 

4.4 x lo’, AT/T, = 1.26. Experimental data from refs. [2, 31. 

the cavity are occupied by essentially turbulence-free 
air at ambient temperature. 

Distributions for k and T’Z, qualitatively similar to 
those described above, were obtained in the shallow 
cavity (a/b = 0.5, c( = 0”). By contrast, stable stratifi- 
cation in the inclined cavity (u/b = 1, tl = 45”) strongly 
reduced the extent and magnitude of both quantities. 
For this case, the turbulent kinetic energy and the 
temperature fluctuations peaked near the bottom 
inside corner of the cavity. Large temperature 

fluctuations were also predicted in the thin fluid layer 
skirting the pool of hot air trapped in the cavity. 

Quantitative comparisons with the measurements 
[2,3] for a/b = 1 and CY = 0” are shown in Figs. 5 and 6. 
(Plots for the other two cases investigated are available 
in ref. [21].) Two sets of calculations are provided. One 
was performed using the far field boundary condition 
treatment for free convection described in Section 2.1. 
The other was performed using precisely the 
experimental values determined in refs. [Z, 33 for 

e 

FIG. 5b. Aperture plane profiles ofmeasured (points) and predicted(lines) nondimensional temperature@) and 
predicted (dotted line) normalized temperature fluctuations [( T’2)“2/ATj for free convection flow in a heated 

cavity: a/b = 1, a = 0”, Gr, = 4.4 x lo’, AT/T, = 1.26. Experimental data from refs. [Z, 33. 

H?rr 29:4-G 
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FIG. 6a. Comparisons between : measurements (points) and predictions (lines) of the y- (17) component of 
velocity ; measurements (points) ofp and predictions (dotted line) of 2k/3 ; for free convection flow in a heated 
cavity: u/b = 1, u = 0”, Gr, = 4.4 x lo’, AT/T, = 1.26. The insert shows the (vertical) comparison location 

inside the cavity. Experimental data from refs. [2,3]. 

ii, V and k along a set of free boundaries located only a minor influence. A similar finding was com- 
considerably nearer to the aperture plane. It is seen that municated by LeQuere et al. [ 141 for the case oflaminar 
the differences are small between the two sets of free convection flow. 
calculations. This is an important and very useful The predicted ii velocity component, on the aperture 
finding for it implies that the free convection flow and plane (Fig. 5a) and inside the cavity (Fig. 6b), is in fairly 
heat transfer characteristics of a heated cavity are good agreement with the measurements. Similar 
strongly determined by local events, the far field having agreement for this component was obtained for the 

ii Imhl 

I I I I I I I I 

FIG. 6b. Comparison between : measurements (points) and predictions (lines) of the X- (ii) component of 
velocity ; measurements(points) of> and predictions (dotted line) of 2k/3 ; for free convection flow in a heated 
cavity : a/b = 1, G( = o”, Gr, = 4.4 x lo’, AT/T, = 1.26. Theinsert shows the (horizontal) comparison location 

inside the cavity. Experimental data from refs. [2,3]. 
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other two cases investigated. By contrast, the absolute 
value of the r? component (Fig. Sa) is overpredicted 
along the aperture plane, although there is agreement 
with regard to the position for U = 0. A similar result 
was obtained for a/b = 0.5 and u = 0”. Calculations of 
the I? component for a/b = 0.5 and 1 with 01= 0” failed 
to reproduce the region of reversed flow extending 
through the aperture plane along the bottom wall of the 
cavity. However, good agreement was obtained inside 
the cavities (see Fig. 6a for the present case) and along 
the aperture plane of the cavity with a/b = 1 and 
CI = 45”. Admitting the possibility of a large (but 
improbable) positioning error in the measurement 
aperture plane location when c( = O”, we compared 
calculated ii profiles at y/a = -0.02 with the 
measurements and found no significant improvements. 
Given the numerical accuracy of the calculations, 
particularly in this region of the flow where the grid is 
especially refined, and the relatively small uncertainty 
in the measurement of r?, we must point to a failing in the 
turbulence model to explain the discrepancies observed 
for 0 in the aperture plane when CL = 0”. 

First, we draw attention to the rather low levels of 
predicted turbulent kinetic energy and normal stress 
components (estimated as 2k/3) respectively shown in 
Figs. 5a, 6a and 6b. Similar results were obtained in the 
cavity with a/b = 0.5 and CI = o”, but not in that with 
u = 45”, where stably stratified fluid significantly 
reduced the level of the fluctuations. Although it is 
shown [2, 31 that the fluctuating velocity measure- 
ments are prone to systematic uncertainties which 
inflate their value, even a reduction of 65% (an upper 
limit to the magnitude of all the uncertainties 
combined) fails to bring the measurements into 
acceptable conformity with the calculations. Second, 
we note that larger values of k in equation (3) would 
imply larger values predicted for the eddy diffusion 
coefficient, p,, and, as a consequence, increased 
turbulent diffusion. An increase in the turbulent 
diffusion of momentum between the flows entering and 
leaving the cavity would bring the aperture plane t? 
component and k calculations in closer agreement with 
the measurements. From this argument we conclude 
that it seems likely the eddy diffusion coefficient of the 
mixing motion has been underpredicted. Further 
considerations suggest why, as well as how this 
shortcoming might be relieved. 

In the relation for g, given by equation (3) the 
quantity C, has been fixed to the constant value 0.09. 
Pourahmadi and Humphrey [24] show that, in fact, C,, 
is a complicated function of streamline curvature, the 
pressure-strain and wall-damping effects. Parallel work 
by Ljuboja and Rodi [25] shows that the effects of 
buoyancy will also work their way into a more 
generalized expression for C,,, thus yielding larger 
values for this quantity in unstably stratified flows. The 
expression derived in ref. [25], for the case ofhorizontal 
and vertical buoyant wall jets (parabolic flows) is of the 
form C, = (u’2/k)o, where I./’ is determined from an 
algebraic stress model relation and w is a function of a 

wall damping function, the buoyant production of 2 
and 10 model constants which must be determined 
experimentally. While a similar but more general 
relation can be derived for the present elliptic flow, 
it involves additional undetermined constants. 
Unfortunately, currently available experimental data 
bases are not sufficiently extensive or accurate enough 
to allow an unambiguous optimization of all constants. 
Even within the context of an algebraic stress 
formulation (see Part I of this work), for which it is 
unnecessary to prescribe an eddy diffusion coefficient, 
p,, and hence a function for C,, the problem of constant 
optimization remains. As a result, we have chosen 
to accept the shortcoming of the present, simpler 
model, anticipating that the existence of absolute discre- 
pancies between measurements and calculations will 
not invalidate the relative trends revealed by the 
calculations. However, we do expect the accuracy ofthe 
present KEM formulation to increase as Re:lGr, -+ 03. 

Figure 5b compares measurements and predictions 
of nondimensional temperature on the aperture plane. 
(Calculated dimensionless temperature fluctuations 
are also provided even though measurements are not 
available.) Agreement is relatively good although the 
measurements suggest a thicker layer of heated air 
emerging from the cavity than is actually predicted. 
This is consistent with the overprediction of finear the 
top of the aperture plane, shown in Fig. 5a; all other 
conditions being equal, the reduced residence time of a 
parcel of air in the cavity should lead to a relative 
reduction ofits energy content. The calculations reveal 
relatively large temperature fluctuations near the top 
and the bottom corners of the aperture plane, and a 
fairly uniform flow at ambient temperature crossing the 
rest of the aperture plane. 

3.3. Mixed convection 
In the experiments of refs. [2, 3) some interesting 

phenomena and flow structures were observed for 
heated cavity flows in the mixed convection regime, 
depending on the relative magnitude of buoyant and 
inertial forces. The purpose of this part of the numerical 
study has been to establish the relative effects of an 
imposed flow on the convective losses from a heated 
cavity. The flow structure in a heated cavity in the 
mixed convection was examined for different free- 
stream velocities such that the parameter of interest, 
Rei/Gr,, varied over a meaningful range. In the 
calculations u = 45”, a/b = 1 and u, = 0.1, 1, 5 and 
10 m s-l, corresponding to Rei/Gr, = 0.4, 0.85, 21.3 
and 85.4, respectively. The boundary conditions for 
these calculations have been discussed in Section 2.1, 

(i) Heat transfer. The variation in Nu, with Rei/Gr, is 
shown in Fig. 7. A minimum Nusselt number occurs at 
about Rei/Gr, = 1 for which buoyant and inertial 
forces in the vicinity of the aperture plane are expected 
to be of comparable magnitude. With some hindsight 
gained from an inspection of the flow details, discussed 
below, the minimum in Nu, is explained as follows. As 
the free-stream velocity initially increases, hot air 
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discharged from the cavity is swept downwards in the 
free-stream direction and partly re-entrained into the 
cavity. Consequently, the average temperature of 
stratified air in the cavity is raised, resulting in reduced 
heat transfer from the cavity walls. Further increases in 
the free-stream velocity induce a recirculating flow 
inside the cavity which gradually destroys the stable 
stratification. Eventually, the flow and heat transfer 
patterns acquire the characteristics of a shear-driven, 
forced convection flow with large, turbulent fluxes. 

For very small or very large values of the parameter 
Ret/Gr,, the expression for the Nusselt number 
characterizing a heated cavity flow is expected to 
acquire limiting forms. For large values of Ret/Gr, one 
expects an independence of Gr,. Physically this means 
that buoyant forces, and hence cavity orientation, are of 
negligible importance in formulating an expression for 
Nu,. A straight linejoining the two points calculated for 
high values of Rei/Gr, follows the relation, 

Nu, = 21.16(Rei/Gr,)0.43. (11) 

This expression can be rewritten in terms of a Stanton 
number by taking Pr = 0.11 and Gr, = 4.4 x 10’ which 
were held constant throughout the calculations. The 
result is 

St = 0.0154 Ree0,14 b (12) 

which is in qualitative agreement with the high 
Reynolds number semi-empirical correlation obtained 
by Haugen and Dhanak [26] for forced convection in 
heated cavities of square cross-section : 

St = 0.149(6/b)-0.‘4 Re;0.25. (13) 

To show this we note that, for the conditions of the 
calculated flow developing along the upper edge of the 
cavity, a developing length Ix]/b > 8 is required before 
transition to turbulence will occur when Ret/Gr, = 

85.4 (the highest value calculated). Thus, for the 
boundary-layer thickness, 6, in equation (13) we 
take the laminar flow result S _ (vx/u,)“~, and it is 
straightforward to show that 

St x Re;‘.“. (14) 

Since the - 0.14 power dependence of 6 in equation (13) 
was derived for turbulent flow, we should not expect a 
complete correspondence between the Re, power 
dependence calculated numerically, equation (12), and 
that determined experimentally, equation (14). 

(ii) Flow characteristics. Detailed velocity vector 
fields, isotherms, turbulent kinetic energy and 
temperature fluctuation contours for mixed convection 
are provided in Humphrey et al. [21]. The principal 
observations are presented below with a small sample 
of the results. 

Figures 8 and 9 show the velocity and temperature 
fields inside a shear-driven cavity at Rei/Gr, = 0.85 
and 21.3, respectively. For Re:/Gr, < 0.4 the flow is 
dominated by buoyant forces, while for Re:/Gr, > 2 it 
is dominated by inertial forces. 

At Rei/Gr, = 0.85 the flow field is still influenced by 
buoyant forces. (Compare with Fig. 3b for pure free 
convection.) Hot air leaving the cavity is immediately 
redirected by the shearing action of the externally 
imposed flow. Figure 9a shows that some of this hot air 
is returned to the cavity where the attendant rise in 
average temperature is the cause for the reduction in 
heat transfer shown in Fig. 7. In contrast to the pure free 
convection case(Fig. 3b), at Rez/Gr, = 0.85 all the air in 
the cavity flows in a clockwise direction due to the shear 
imposed by the external flow. Notwithstanding, 
velocities are very small in the stratified hot air region. 

At Ret/Gr, = 21.3 the flow field shown in Fig. 8b is 
dominated by inertial effects and loses any tendency to 
be redirected by buoyancy forces. In addition to the 
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FIG. 7. Prediction of Nu, vs R&Gr, for mixed convection flow in a heated cavity : a/b = 1, a = 45”, Gr, = 
4.4 x lo7 and AT/T, = 1.26. 
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FIG. 8. Velocity vector plot for mixed convection flow in a heated cavity with a/b = 1, a = 45”, Gr, = 4.4 x 10’ 
and AT/T, = 1.26. From left to right Ref/Gr, = 0.85 and 21.3. 

main rotating flow, small recirculation zones, or eddies, 
appear at both of the inner cavity corners. A tendency 
for a third eddy to form at the top aperture plane corner 
is also evident, but even at RezfGr, = 85.4 flow 
separation did not occur. These corner eddies are 
typical of wall-driven cavity flows; see, for example, 
[27], and both their size and intensity increased with 
increasing Rez/Gr,. 

The corresponding temperature field in Fig. 9b 
shows the dominant influence of forced convection. 
Hot air is recirculated along the periphery of the cavity 
from which it escapes mainly through molecular and 
turbulent diffusion. Large levels of turbulent kinetic 
energy (plotted in ref. [21]) were observed in the cavity 
aperture plane where shearing production is in- 
tense. Part of this turbulence is convected into the 
cavity where it enhances the wall heat transfer, the re- 
mainder being driven downstream. High levels of 
the temperature fluctuations were also confined to the 
aperture plane and the cavity walls [21]. The 
magnitude of the temperature fluctuations was found 
to decrease with increasing Rez/Gr,, due to the higher 
degree of mixing of fluid in the cavity. 

In closing this section we note that the approxima- 

tions made to simulate the far field boundary 
conditions for the mixed convection cavity flows 
investigated by Humphrey et al. [Z, 31 have yielded 
predicted flow patterns and temperature distributions 
that are in good qualitative agreement with their 
experimental observations [21]. 

4. CONCLUSIONS 

The KEM formulation of Part I of this work was 
further extended to predict free and mixed convection 
flows in strongly heated, rectangular cavities of vari- 
able cross-section and orientation. Relatively good 
agreement is obtained between measurements and 
predictions of the mean velocity and temperature 
distributions in the free convection regime, but the 
turbulent kinetic energy and eddy diffusion coefficient 
are consistently underpredicted when a = 0”. As a 
result, although the relative trends in predicted heat 
transfer, as a function of u/b and a, are in agreement 
with the available measurements, the Nusselt numbers 
differ significantly in their absolute values. Because of 
experimental uncertainties it is difficult to assess the 
accuracy of the heat transfer calculations. However, the 
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FIG. 9. Contours of nondimensional temperature(O) for mixed convection flow in a heated cavity with u/b = 1, 
u = 45”, Gr, = 4.4 x 10’ and AT/T, = 1.26. From left to right Re:/Gr, = 0.85 and 21.3. 

uncertainties are such that, were it possible to adjust 
for their effects on the experimental data, this 
would significantly reduce the discrepancies between 
measurements and calculations of the heat transfer and 
turbulence quantities, particularly the turbulent kinetic 
energy. 

The free convection calculations show that, 
regardless of orientation and aspect ratio, the cavity 
Nusselt number correlates well with Gr,‘/3. A 
comparison between calculated 2-D and measured 3-D 
heat transfer coefficients supports the notion that 3-D 
motions strongly affect the heat transfer from the top 
and back walls in a cubical cavity. 

Calculations of mixed convection in a cavity with 
u/b = 1 and tx = 45” reveal a minimum in the Nusselt 
number for Rez/Gr, = O(1). For Rez/Gr, > 2, the heat 
losses from a cavity are strongly influenced by inertial 
effects. By Re:/Gr, > 21.3 the flow field in a heated 
cavity is independent of orientation with respect to 
gravity and presents all the characteristics typical of a 
shear-driven cavity flow. 

For both free and mixed convection, the predicted 
flow patterns are in good qualitative agreement with 
the flow visualization observations of Humphrey et al. 
[2,3]. While their experiments confirm the assumption 
of turbulent flow for all the conditions investigated 
here, they do not rule out the possibility of a mean flow 

unsteadiness that was not detected. This could explain 
part of the discrepancy existing between measurements 
and calculations of the turbulent kinetic energy and 
heat transfer in free convection. This last point is the 
subject of continuing research. 
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SIMULATION NUMERIQUE D’UN ECOULEMENT TURBULENT LIBRE. 
II-CONVECTION NATURELLE ET MIXTE DANS UNE CAVITE CHAUFFEE 

R&m-Dans la premi&re partie de l’ttude deux modeles appliquts $ la convection naturelle le long d’une 
plaque verticale chaude montrent des rbultats p&is pour l’6coulement moyen et le transfert thermique. Par 
suite, le plus simple des deux(une formulation k--E basbe sur la notion des diffusivitCs turbulentes de quantitb de 
mouvement et de chaleur) est Btendu B la prevision de la convection naturelle et mixte d’air dans une cavitt de 
section rectangulaire avec une orientation quelconque. Ceci fait l’objet du p&sent texte. Les calculs 
num6riques montrent que les d&ails de la convection naturelle sont fortement gouvemes par les 
caract&tiques du transfert thermique local. Celles-ci d+endent du rapport de forme a/b, de l’angle 
d’inclinaison a et du nombre de Grashof Gr,. Par exemple, une stratification stable de fluide, dans une cavitC 
inclinke, amortit fortement les fluctuations turbulentes, r&duisant aussi les pertes thermiques de la cavite. Des 
calculs conduits pour les cas Ctudits experimentalement par Humphrey et al. [Sandia Report, No. SAND 84- 
8192 (1985); Phil. Trans. R. Sot. A316,57-84 (1985)] montrent un bon accord qualitatif avec les distributions 
mesurtes de vitesse et de temptrature. Les pr6visions du nombre de Nusselt, Nu, donnent des tendances qui 
sont aussi en accord avec les mesures. Pour la convection mixte, les dCtails de I’bcoulement deviennent 
asymptotiquement indtpendants de a quand le rapport des forces d’inertie aux forces d’Archimtde, caractCris6 
par Rei/Gr,, augmente. Pour a/b = 1 et c( = 45”, les prtvisons r&lent un minimum de Nu,, quand Rei/Gr, 
- 1. La plupart des configurations complexes de l’boulement observBes expirimentalement sont reproduites 

numkriquement, $ la fois pour les convections naturelle et mixte. 
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NUMERISCHE SIMULATION TURBULENTER AUFTRIEBSSTRGMUNGEN-II. 
FREIE UND GEMISCHTE KONVEKTION IN EINER BEHEIZTEN VERTIEFUNG 

Zusammenfassung-Numerische Berechnungen zeigen, daB die freie Konvektionsstrijmung in einer 
beheizten Vertiefung stark durch den artlichen Wlrmetibergang bestimmt wird. Die Charakteristik hlngt 
vom Seitenverhlltnis a/b der rechteckigen Vertiefung, vom Neigungswinkel a und von der Grashof-Zahl Gr, 
ab. Eine stabile Schichtung des beheizten Fluides in einer geneigten Vertiefung dampft beispielsweise die 
turbulenten Bewegungen stark und reduziert aufdiese Weise die konvektiven Warmeverluste. Berechnungen, 
welche fur die von Humphrey und anderen experimentell untersuchten Fllle der freien Konvektion ausgefiihrt 
worden sind, zeigen eine qualitativ gute Ubereinstimmung mit den gemessenen Geschwindigkeits- und 
Temperaturverteilungen. Die vorausberechneten Nusseltzahlen, Nu,, stimmen ebenfalls qualitativ mit den 
Messungen iiberein. Fiir gemischte Konvektion hlngt die Striimung umso weniger von G( ab, je gr6l3er das 
Verhlltnis von Trlgheits- zu Auftriebskraften, charakterisiert durch R&Gr, ist. Fur a/b = 1 und a = 45” 
zeigen die Vorhersagen ein Minimum fur die Nusseltzahl, Nu,, wenn Re,2/Gr, x 1. Viele der komplexen 
Stromungsmuster, die experimentell fur freie und gemischte Konvektion gefunden wurden, sind numerisch 

reproduziert worden. 

cIHCJIEHHOE MCCJIEAOBAHME l-IO,@EMHOl-0 TYPEYJIEHTHOIO TEcIEHWII-II. 
CBO6OAHAR II CMEIlIAHHA5l KOHBEKHWR B HAFPETOH I’IOJIOCTM 

AuuoTauw-B IIepBOti 'IaCTu pa6OTbInpCAJIOmeHbIABeMOAenu paC'ieTaCBO6OAHO-u CMemaHHOKOHBeK- 

TuBHbIX Typ6yneHTHbIX IIOTOKOB C MaJIbIMU YuCnaMu PefiHOnbACa. CpaBHeHue AaHHbIX u3MepeHufi u 

paC'IeTOBAnSI CB060AHOfi KOHBeKIIUU y HarpeTOi BepTuKaJlbHOfi IlJlOCKOii IlJIaCTUHbI lTOKa3aJIu,STO o6e 
MOAenu AafOT TO'IHbIe pe3ynbTaTbI AJIK CpeAHuX 3Ha'IeHuir XapaK'repuCTuK IIOTOKa u TeIlJIOIIepeHOCa. 

EOnee IIpOCTaU H3 AByX MOAeJIefi(k-&-MOAenb, OCHOBaHHalI Ha IlOHIlTEiH Typ6yJIeHTHOii TeMnepaTypo- 

npoBoAHocTu Ann UMnynbca u Tenna) npuMeHeHa Ann pacgera ycroi%insbtx CBO6OAHO-U cMemaHHo- 

KOHBeKTUBHbIX~OTOKOBBO3AyXaBCunbHOHa~peTOii~OnOCTu~pOu3BOnbHbIX~pPMOyrO~bHOrOCe~eHu~ 

u OpueHTaLWu.%WIeHHbIe pe3yJIbTaTbI IIOKa3bIBaH)T,'ITO Ha OTAeJIbHbIe yYaCTKu CB060AHOKOHBeKTuB- 

HOrO FIOTOKa CunbHOe BnWIHue OKa3bIBaeT nOKanbHbIfi TCIInOIlepeHOC, XapaKTepuCTuKu KOTOpOrO 

3aBnCIIT OT OTHOmeHul cTOPOH IIOnOCTu a/b, yrna HaKnOHa a B ‘Iucna rpaCrO@a Gr,. HanpuMep, 

yCTOi%iBaR CTpaTUf$uKaUuK HarpeTOti XGiAKOCTu BHyTpU HaKJIOHH0i-i IIOnOCTu CUJIbHO IIOAaBnlleT Typ- 

6yJEHTHbIe @IyKTyaUUU, yMeHbmaK TaKUM o6pa3oM KOHBeKTUBHbIe IIOTepu TeIIJIa U3 IIOJIOCTU. 

Pac=terbr, npoeenesenre XaMnpeeM H np. [Sandia Report No. SAND 84-8192 (1985); PM. Trans. R. Sot. 
A316, 57 (1985)], IIOKa3aJHi XOpOmee KaYeCTBeHHOe COBlTaAeHUe YuCneHHbIX AaHHbIX C u3MepeHUBMu 

pacnpeAeneHuii CK~P~CTU u TeMnepaTypbI,wicna HyCCenbTa Nu,.&s CMemaHHoii KomeKum CTPYK- 

Typa IIOTOKa CTaHOBUTCIl aCUMlTTOTuYeCKU He3aBUCuMOk OT a,IIOCKOnbKy OTHOmeHUe UHepUUOHHbIX U 

noAE.eMHbIx cun,xapaKTepu3yeMoe Rei/Gr,, pacTeT.,&H a/b = 1 a a = 45” paccwiTaH0 MuHuManbHOe 
3HaqeHue Nu, npa Rei/Gr,- 1. llpuB0Au~cK Muoro npuMepoB sicneHHor0 uccneAoBaHuK cnoxHbIx 

TeYeHuir. 


